《实变函数简明教程》,P78,第2题(判断函数可测性)

该博客探讨了实变函数中关于函数可测性的概念。通过引理定义3.1和定理2.2(i),证明了如果函数f在E1和E2上可测,且在E1∩E2的值相同,那么f在E1∪E2,E1E2和E1∩E2上也都是可测的。
摘要由CSDN通过智能技术生成

《实变函数简明教程》,P78,第2题(判断函数可测性)

引理:P59,定义3.1

  设 E ⊂ R n E\subset { {\mathbb{R}}^{n}} ERn可测, f f f是定义于 E E E上的广义实值函数。若对于任意实数 a a a,点集 { x ∣ x ∈ E ,   f ( x ) > a } \left\{ x|x\in E,\text{ }f\left( x \right)>a \right\} { xxE, f(x)>a} R n { {\mathbb{R}}^{n}} Rn内的可测集,则 f f f称为 E E E上的Lebesgue可测函数,简称 f f f E E E上的可测函数,或 f f f E E E上可测。

引理:P49,定理2.2(i)

  若 E 1 ∈ M { {E}_{1}}\in \mathscr{M} E1M E 2 ∈ M { {E}_{2}}\in \mathscr{M} E2M,则 E 1 ∪ E 2 { {E}_{1}}\cup { {E}_{2}} E1E2 E 1 ∩ E 2 { {E}_{1}}\cap { {E}_{2}} E1E2 E 1 \ E 2 { {E}_{1}}\backslash { {E}_{2}} E1\E2皆属于 M \mathscr{M} M,其中 M \mathscr{M} M是全体可测集组成的集合。

题目:P78,2

  若函数 f ( x ) f\left( x \right) f(x) E 1 { {E}_{1}} E1 E 2 ⊂ R n { {E}_{2}}\subset { {\mathbb{R}}^{n}} E2Rn上可测,又若 f f f分别作为 E 1 { {E}_{1}} E1 E 2 { {E}_{2}} E2上的函数,在 x ∈ E 1 ∩ E 2 x\in { {E}_{1}}\cap { {E}_{2}} xE1E2的值相同,则 f f f E 1 ∪ E 2 { {E}_{1}}\cup { {E}_{2}} E1E2 E 1 \ E 2 { {E}_{1}}\backslash { {E}_{2}} E1\E2 E 1 ∩ E 2 { {E}_{1}}\cap { {E}_{2}} E1E2可测。

解答

E 1 , 2 { {E}_{1,2}} E1,2上的函数 f f f f E 1 , 2 { {f}_{ { {E}_{1,2}}}} fE1,2
首先, f ( x ) f\left( x \right) f(x) E 1 { {E}_{1}} E1 E 2 { {E}_{2}} E2上可测蕴涵
E 1 ,   E 2 ∈ M . (P78-2-1) { {E}_{1}},\text{ }{ {E}_{2}}\in \mathscr{M}. \tag{P78-2-1} E1, E2M.(P78-2-1)
其次, f ( x ) f\left( x \right) f(x) E 1 { {E}_{1}} E1 E 2 { {E}_{2}} E2上可测蕴涵
∀ a ∈ R ,   V 1 , 2 : = { x ∈ E 1 , 2 :   f E 1 , 2 ( x ) > a } ∈ M . (P78-2-2) \forall a\in \mathbb{R},\text{ }{ {V}_{1,2}}:=\left\{ x\in { {E}_{1,2}}:\text{ }{ {f}_{ { {E}_{1,2}}}}\left( x \right)>a \right\}\in \mathscr{M}. \tag{P78-2-2} aR, V1,2:={ xE1,2: fE1,2(x)>a}M.(P78-2-2)
由课本P49的定理2.2,得到
V 1 ∪ V 2 ,   V 1 ∩ V 2 ,   V 1 \ V 2 ∈ M . (P78-2-3) { {V}_{1}}\cup { {V}_{2}},\text{ }{ {V}_{1}}\cap { {V}_{2}},\text{ }{ {V}_{1}}\backslash { {V}_{2}}\in \mathscr{M}. \tag{P78-2-3} V1V2, V1V2, V1\V2M.(P78-2-3)
最后,由题意知
∀ x ∈ E 1 ∩ E 2 ,   f E 1 ( x ) = f E 2 ( x ) = f ( x ) . (P78-2-4) \forall x\in { {E}_{1}}\cap { {E}_{2}},\text{ }{ {f}_{ { {E}_{1}}}}\left( x \right)={ {f}_{ { {E}_{2}}}}\left( x \right)=f\left( x \right). \tag{P78-2-4} xE1E2, fE1(x)=fE2(x)=f(x).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值