《实变函数简明教程》,P78,第2题(判断函数可测性)
引理:P59,定义3.1
设 E ⊂ R n E\subset { {\mathbb{R}}^{n}} E⊂Rn可测, f f f是定义于 E E E上的广义实值函数。若对于任意实数 a a a,点集 { x ∣ x ∈ E , f ( x ) > a } \left\{ x|x\in E,\text{ }f\left( x \right)>a \right\} { x∣x∈E, f(x)>a}是 R n { {\mathbb{R}}^{n}} Rn内的可测集,则 f f f称为 E E E上的Lebesgue可测函数,简称 f f f是 E E E上的可测函数,或 f f f在 E E E上可测。
引理:P49,定理2.2(i)
若 E 1 ∈ M { {E}_{1}}\in \mathscr{M} E1∈M, E 2 ∈ M { {E}_{2}}\in \mathscr{M} E2∈M,则 E 1 ∪ E 2 { {E}_{1}}\cup { {E}_{2}} E1∪E2, E 1 ∩ E 2 { {E}_{1}}\cap { {E}_{2}} E1∩E2, E 1 \ E 2 { {E}_{1}}\backslash { {E}_{2}} E1\E2皆属于 M \mathscr{M} M,其中 M \mathscr{M} M是全体可测集组成的集合。
题目:P78,2
若函数 f ( x ) f\left( x \right) f(x)在 E 1 { {E}_{1}} E1, E 2 ⊂ R n { {E}_{2}}\subset { {\mathbb{R}}^{n}} E2⊂Rn上可测,又若 f f f分别作为 E 1 { {E}_{1}} E1与 E 2 { {E}_{2}} E2上的函数,在 x ∈ E 1 ∩ E 2 x\in { {E}_{1}}\cap { {E}_{2}} x∈E1∩E2的值相同,则 f f f在 E 1 ∪ E 2 { {E}_{1}}\cup { {E}_{2}} E1∪E2, E 1 \ E 2 { {E}_{1}}\backslash { {E}_{2}} E1\E2, E 1 ∩ E 2 { {E}_{1}}\cap { {E}_{2}} E1∩E2可测。
解答
记 E 1 , 2 {
{E}_{1,2}} E1,2上的函数 f f f为 f E 1 , 2 {
{f}_{
{
{E}_{1,2}}}} fE1,2。
首先, f ( x ) f\left( x \right) f(x)在 E 1 {
{E}_{1}} E1, E 2 {
{E}_{2}} E2上可测蕴涵
E 1 , E 2 ∈ M . (P78-2-1) {
{E}_{1}},\text{ }{
{E}_{2}}\in \mathscr{M}. \tag{P78-2-1} E1, E2∈M.(P78-2-1)
其次, f ( x ) f\left( x \right) f(x)在 E 1 {
{E}_{1}} E1, E 2 {
{E}_{2}} E2上可测蕴涵
∀ a ∈ R , V 1 , 2 : = { x ∈ E 1 , 2 : f E 1 , 2 ( x ) > a } ∈ M . (P78-2-2) \forall a\in \mathbb{R},\text{ }{
{V}_{1,2}}:=\left\{ x\in {
{E}_{1,2}}:\text{ }{
{f}_{
{
{E}_{1,2}}}}\left( x \right)>a \right\}\in \mathscr{M}. \tag{P78-2-2} ∀a∈R, V1,2:={
x∈E1,2: fE1,2(x)>a}∈M.(P78-2-2)
由课本P49的定理2.2,得到
V 1 ∪ V 2 , V 1 ∩ V 2 , V 1 \ V 2 ∈ M . (P78-2-3) {
{V}_{1}}\cup {
{V}_{2}},\text{ }{
{V}_{1}}\cap {
{V}_{2}},\text{ }{
{V}_{1}}\backslash {
{V}_{2}}\in \mathscr{M}. \tag{P78-2-3} V1∪V2, V1∩V2, V1\V2∈M.(P78-2-3)
最后,由题意知
∀ x ∈ E 1 ∩ E 2 , f E 1 ( x ) = f E 2 ( x ) = f ( x ) . (P78-2-4) \forall x\in {
{E}_{1}}\cap {
{E}_{2}},\text{ }{
{f}_{
{
{E}_{1}}}}\left( x \right)={
{f}_{
{
{E}_{2}}}}\left( x \right)=f\left( x \right). \tag{P78-2-4} ∀x∈E1∩E2, fE1(x)=fE2(x)=f(x).