《实变函数简明教程》,P78,第16题(依测度收敛 推导 依测度收敛,几乎处处小于 推导 几乎处处小于)

本文通过《实变函数简明教程》中的P78第16题,详细证明了若函数序列{fk(x)}在E上依测度收敛于f(x),则{∣fk(x)∣}依测度收敛到∣f(x)∣;并且如果fk(x)≤g(x)几乎处处,可以推导出f(x)≤g(x)几乎处处。证明过程中应用了测度的性质和F. Riesz定理。
摘要由CSDN通过智能技术生成

《实变函数简明教程》,P78,第16题(依测度收敛 推导 依测度收敛,几乎处处小于 推导 几乎处处小于)

题目:P78,16

  1. { f k ( x ) } \left\{ { {f}_{k}}\left( x \right) \right\} { fk(x)} E E E上依测度收敛于 f ( x ) f\left( x \right) f(x),试证明 { ∣ f k ( x ) ∣ } \left\{ \left| { {f}_{k}}\left( x \right) \right| \right\} { fk(x)} E E E上依测度收敛到 ∣ f ( x ) ∣ \left| f\left( x \right) \right| f(x)
  2. 又若 f k ( x ) ≤ g ( x ) ( k = 1 , 2 , ⋯   ) { {f}_{k}}\left( x \right)\le g\left( x \right)\left( k=1,2,\cdots \right) fk(x)g(x)(k=1,2,),a. e. 于 E E E,试证 f ( x ) ≤ g ( x ) f\left( x \right)\le g\left( x \right) f(x)g(x) a. e. 于 E E E

解答

  1. 首先,基于 { f k ( x ) } \left\{ { {f}_{k}}\left( x \right) \right\} { fk(x)} E E E上依测度收敛于 f ( x ) f\left( x \right) f(x),根据课本P69的定义3.3,可得
    函 数 f ( x ) , f k ( x ) ( k = 1 , 2 , ⋯   ) 在 E 上 可 测 。 (P78-16-1) 函数f\left( x \right),{ {f}_{k}}\left( x \right)\left( k=1,2,\cdots \right)在E上可测。\tag{P78-16-1} f(x)fk(x)(k=1,2,)E(P78-16-1)
    ∃ M > 0 , f ( x ) ,   f k ( x ) ≤ M  a.e.  x ∈ E . (P78-16-2) \exists M>0,f\left( x \right),\text{ }{ {f}_{k}}\left( x \right)\le M\text{ a}\text{.e}\text{. }x\in E. \tag{P78-16-2} M>0f(x), fk(x)M a.exE.(P78-16-2)
    由课本P63和材料(P78-16-1),可得
    ∣ f ( x ) ∣ , ∣ f k ( x ) ∣ ( k = 1 , 2 , ⋯   ) 在 E 上 可 测 。 (P78-16-3) \left| f\left( x \right) \right|,\left| { {f}_{k}}\left( x \right) \right|\left( k=1,2,\cdots \right)在E上可测。 \tag{P78-16-3} f(x)fk(x)(k=1,2,)E(P78-16-3)
    材料(P78-16-2)也可以直接推出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值