题目:P78,16
- 若 { f k ( x ) } \left\{ { {f}_{k}}\left( x \right) \right\} { fk(x)}在 E E E上依测度收敛于 f ( x ) f\left( x \right) f(x),试证明 { ∣ f k ( x ) ∣ } \left\{ \left| { {f}_{k}}\left( x \right) \right| \right\} { ∣fk(x)∣}在 E E E上依测度收敛到 ∣ f ( x ) ∣ \left| f\left( x \right) \right| ∣f(x)∣。
- 又若 f k ( x ) ≤ g ( x ) ( k = 1 , 2 , ⋯ ) { {f}_{k}}\left( x \right)\le g\left( x \right)\left( k=1,2,\cdots \right) fk(x)≤g(x)(k=1,2,⋯),a. e. 于 E E E,试证 f ( x ) ≤ g ( x ) f\left( x \right)\le g\left( x \right) f(x)≤g(x) a. e. 于 E E E。
解答
-
首先,基于 { f k ( x ) } \left\{ { {f}_{k}}\left( x \right) \right\} { fk(x)}在 E E E上依测度收敛于 f ( x ) f\left( x \right) f(x),根据课本P69的定义3.3,可得
函 数 f ( x ) , f k ( x ) ( k = 1 , 2 , ⋯ ) 在 E 上 可 测 。 (P78-16-1) 函数f\left( x \right),{ {f}_{k}}\left( x \right)\left( k=1,2,\cdots \right)在E上可测。\tag{P78-16-1} 函数f(x),fk(x)(k=1,2,⋯)在E上可测。(P78-16-1)
∃ M > 0 , f ( x ) , f k ( x ) ≤ M a.e. x ∈ E . (P78-16-2) \exists M>0,f\left( x \right),\text{ }{ {f}_{k}}\left( x \right)\le M\text{ a}\text{.e}\text{. }x\in E. \tag{P78-16-2} ∃M>0,f(x), fk(x)≤M a.e. x∈E.(P78-16-2)
由课本P63和材料(P78-16-1),可得
∣ f ( x ) ∣ , ∣ f k ( x ) ∣ ( k = 1 , 2 , ⋯ ) 在 E 上 可 测 。 (P78-16-3) \left| f\left( x \right) \right|,\left| { {f}_{k}}\left( x \right) \right|\left( k=1,2,\cdots \right)在E上可测。 \tag{P78-16-3} ∣f(x)∣,∣fk(x)∣(k=1,2,⋯)在E上可测。(P78-16-3)
材料(P78-16-2)也可以直接推出