《实变函数简明教程》,第三章:可测函数,P58-P78,定义整理
P59,定义3.1(可测函数的定义)
提供对象: E ⊂ R n E\subset {
{\mathbb{R}}^{n}} E⊂Rn可测, f f f是定义于 E E E上的广义实值函数。
满足条件:
- 对于任意实数 a a a,点集 { x : x ∈ E , f ( x ) > a } \left\{ x:\text{ }x\in E,\text{ }f\left( x \right)>a \right\} { x: x∈E, f(x)>a}是 R n { {\mathbb{R}}^{n}} Rn内的可测集。
定义术语: f f f称为 E E E上的Lebesgue可测函数,简称 f f f是 E E E上的可测函数,或 f f f在 E E E上可测。
P60,定义3.2(简单函数的定义)
提供对象: E ⊂ R n E\subset { {\mathbb{R}}^{n}} E⊂Rn是一个集合, φ \varphi φ是定义在 E E E上的一个函数。
满足条件:
- φ \varphi φ只取有限个不同的值 a 1 , a 2 ,