待分析命题
设 F = ⋃ k = 1 ∞ F k F=\bigcup\limits_{k=1}^{\infty }{ { {F}_{k}}} F=k=1⋃∞Fk,其中 F k { {F}_{k}} Fk是有界闭集,且互不相交。这种情况下 F F F也不一定为闭集。
一个反例
我们将研究范围缩小在闭区间 F 0 : = [ 0 , 1 ] ⊂ R 1 F_0:=\left[ 0,1 \right]\subset { {\mathbb{R}}^{1}} F0:=[0,1]⊂R1。
-
首先,将 [ 0 , 1 ] \left[ 0,1 \right] [0,1]均分成三段,出现三个小闭区间,从左至右依次记为 F 11 , F 12 , F 13 { {F}_{11}},\text{ }{ {F}_{12}},\text{ }{ {F}_{13}} F11, F12, F13,令
F 1 : = F 11 = [ 0 , 1 3 ] ⊂ [ 0 , 1 ] . { {F}_{1}}:={ {F}_{11}}=\left[ 0,\frac{1}{3} \right]\subset \left[ 0,1 \right]. F1:=F11=[0,31]⊂[0,1].
-
接着,将 F 13 { {F}_{13}} F13均分成三段,出现三个小闭区间,从左至右依次记为 F 21 , F 22 , F 23 { {F}_{21}},\text{ }{ {F}_{22}},\text{ }{ {F}_{23}} F21, F22, F23,令
F 2 : = F 21 = [ 2 3 , 7 9 ] ⊂ F 13 . { {F}_{2}}:={ {F}_{21}}=\left[ \frac{2}{3},\frac{7}{9} \right]\subset { {F}_{13}}. F2:=F21=[32,97]⊂F13.
-
接着,将 F 23 { {F}_{23}} F23均分成三段,出现三个小闭区间,从左至右依次记为 F 31 , F 32 , F 33 { {F}_{31}},\text{ }{ {F}_{32}},\text{ }{ {F}_{33}} F31, F32, F33,令
F 3 :