《实变函数简明教程》,第一章:集合与点集,可列个互不相交的有界闭集的并集不一定是闭集的一个反例

本文通过详细分析一个特定的集合构造过程,展示了一个可列个互不相交的有界闭集的并集不一定是闭集的数学反例,具体涉及在闭区间[0,1]上连续分割闭区间的策略,证明了1是该集合的聚点但不属于集合本身。" 110651896,8086619,数字IC设计中的DFT与扫描链解析,"['IC设计', 'FPGA', 'DFT', '扫描链', '可测试性']
摘要由CSDN通过智能技术生成

《实变函数简明教程》,第一章:集合与点集,可列个互不相交的有界闭集的并集不一定是闭集的一个反例

待分析命题

  设 F = ⋃ k = 1 ∞ F k F=\bigcup\limits_{k=1}^{\infty }{ { {F}_{k}}} F=k=1Fk,其中 F k { {F}_{k}} Fk是有界闭集,且互不相交。这种情况下 F F F不一定为闭集

一个反例

我们将研究范围缩小在闭区间 F 0 : = [ 0 , 1 ] ⊂ R 1 F_0:=\left[ 0,1 \right]\subset { {\mathbb{R}}^{1}} F0:=[0,1]R1

  • 首先,将 [ 0 , 1 ] \left[ 0,1 \right] [0,1]均分成三段,出现三个小闭区间,从左至右依次记为 F 11 ,   F 12 ,   F 13 { {F}_{11}},\text{ }{ {F}_{12}},\text{ }{ {F}_{13}} F11, F12, F13,令
    F 1 : = F 11 = [ 0 , 1 3 ] ⊂ [ 0 , 1 ] . { {F}_{1}}:={ {F}_{11}}=\left[ 0,\frac{1}{3} \right]\subset \left[ 0,1 \right]. F1:=F11=[0,31][0,1].
    在这里插入图片描述

  • 接着,将 F 13 { {F}_{13}} F13均分成三段,出现三个小闭区间,从左至右依次记为 F 21 ,   F 22 ,   F 23 { {F}_{21}},\text{ }{ {F}_{22}},\text{ }{ {F}_{23}} F21, F22, F23,令
    F 2 : = F 21 = [ 2 3 , 7 9 ] ⊂ F 13 . { {F}_{2}}:={ {F}_{21}}=\left[ \frac{2}{3},\frac{7}{9} \right]\subset { {F}_{13}}. F2:=F21=[32,97]F13.
    在这里插入图片描述

  • 接着,将 F 23 { {F}_{23}} F23均分成三段,出现三个小闭区间,从左至右依次记为 F 31 ,   F 32 ,   F 33 { {F}_{31}},\text{ }{ {F}_{32}},\text{ }{ {F}_{33}} F31, F32, F33,令
    F 3 :

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值