《实变函数简明教程》,P91,定理4.8(ii)(零测集上的任意广义实值函数Lebesgue可积且积分值为0)

这篇博客讨论了实变函数中,零测集上任意广义实值函数的Lebesgue积分性质。通过证明过程,展示了如何利用课本中的例子和定义,得出这样的函数积分值为0,并因此属于L(E)类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《实变函数简明教程》,P91,定理4.8(ii)(零测集上的任意广义实值函数Lebesgue可积且积分值为0)

待分析命题

  若 f f f是零测集 E E E上的任意广义实值函数,则
∫ E f ( x ) d x = 0 , 从 而 f ∈ L ( E ) 。 \int_{E}{f\left( x \right)dx}=0,从而f\in L\left( E \right)。 Ef(x)dx=0fL(E)

证明过程

首先,由课本P60的例2:零测集上的任意广义实值函数可测,有
广 义 实 值 函 数 f 可 测 。 广义实值函数f可测。 广f
基于此,我们将 f f f拆分为正部 f + { {f}^{+}} f+与负部 f − { {f}^{-}} f的差,即
f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值