《实变函数简明教程》,第四章:Lebesgue积分,在可测集E上Lebesgue可积的函数f在E的可测子集F上仍Lebesgue可积

本文证明了如果函数f在可测集E上Lebesgue可积,那么对于E的任意可测子集F,f在F上也Lebesgue可积。通过分析f的正负部分的积分和实常数与无穷的运算,得出f在F上积分值有限,从而符合Lebesgue可积条件。
摘要由CSDN通过智能技术生成

《实变函数简明教程》,第四章:Lebesgue积分,在可测集E上Lebesgue可积的函数f在E的可测子集F上仍Lebesgue可积

待分析命题

  设 E ⊂ R n E\subset { {\mathbb{R}}^{n}} ERn是一个可测集, f ∈ L ( E ) f\in L\left( E \right) fL(E)。对 E E E的任意一个子集 F F F,若 F F F可测,则 f ∈ L ( F ) f\in L\left( F \right) fL(F)

证明过程

  1. 一方面, f ∈ L ( E ) f\in L\left( E \right) fL(E)蕴涵广义实值函数 f f f E E E上有Lebesgue积分。根据课本P90的定义4.3,我们有
    ∫ E f ( x ) d x = ∫ E f + ( x ) d x − ∫ E f − ( x ) d x , \int_{E}{f\left( x \right)dx}=\int_{E}{ { {f}^{+}}\left( x \right)dx}-\int_{E}{ { {f}^{-}}\left( x \right)dx}, Ef(x)dx=Ef+(x)dxEf(x)dx,
    其中
    f + ( x ) = max ⁡ {

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值