《实变函数简明教程》,第四章:Lebesgue积分,零测集上的任意非负简单函数Lebesgue可积且积分值为0

本文介绍了在实变函数中,当E是一个零测集,且φ是E上的非负简单函数时,φ是Lebesgue可积且其积分值为0。通过分析函数的标准表示和Lebesgue积分的定义,证明了这一命题,并指出即使函数值包含无穷大,也不会影响积分结果为0的结论。
摘要由CSDN通过智能技术生成

《实变函数简明教程》,第四章:Lebesgue积分,零测集上的任意非负简单函数Lebesgue可积且积分值为0

待分析命题

  设 E ⊂ R n E\subset { {\mathbb{R}}^{n}} ERn是一个零测集, φ \varphi φ E E E上的一个非负简单函数,则
φ ∈ L ( E ) 且 ∫ E φ ( x ) d x = 0. \varphi \in L\left( E \right) 且 \int_{E}{\varphi \left( x \right)dx}=0. φL(E)Eφ(x)dx=0.

证明过程

根据课本P60的定义3.2,我们设非负简单函数 φ \varphi φ的标准表示式为
φ ( x ) = ∑ i = 1 k c i χ E i ( x ) ,   x ∈ E = ⋃ i = 1 k E i , (*) \varphi \left( x \right)=\sum\limits_{i=1}^{k}{ { {c}_{i}}{ {\chi }_{ { {E}_{i}}}}\left( x \right)},\text{ }x\in E=\bigcup\limits_{i=1}^{k}{ { {E}_{i}}}, \tag{*} φ(x)=i=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值