对角线为x,其余元素均为a的n阶行列式

该博客介绍了如何求解一个特殊的n阶行列式,其中对角线元素为x,非对角线元素均为a。当n=1时,行列式值为x。对于n≥2的情况,通过拉普拉斯展开和行变换,将行列式转换为上三角形式,并得出最终表达式:((n-1)a+x)(x-a)^(n-1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

题目

  求解 n n n阶行列式
∣ x a a ⋯ a a x a ⋯ a a a x ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ a a a ⋯ x ∣ . \left| \begin{matrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \\ \end{matrix} \right|. xaaaaxaaaaxaaaax.

求解

n = 1 n=1 n=1时,显然行列式等于 x x x
n ≥ 2 n\ge 2 n2时,有
∣ x a a ⋯ a a x a ⋯ a a a x ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ a a a ⋯ x ∣ → = ∑ j = 2 n c j → c 1 ∣ ( n − 1 ) a + x a a ⋯ a ( n −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值