题目
求解 n n n阶行列式
∣ x a a ⋯ a a x a ⋯ a a a x ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ a a a ⋯ x ∣ . \left| \begin{matrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \\ \end{matrix} \right|. ∣∣∣∣∣∣∣∣∣∣∣xaa⋮aaxa⋮aaax⋮a⋯⋯⋯⋱⋯aaa⋮x∣∣∣∣∣∣∣∣∣∣∣.
求解
当 n = 1 n=1 n=1时,显然行列式等于 x x x。
当 n ≥ 2 n\ge 2 n≥2时,有
∣ x a a ⋯ a a x a ⋯ a a a x ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ a a a ⋯ x ∣ → = ∑ j = 2 n c j → c 1 ∣ ( n − 1 ) a + x a a ⋯ a ( n −