什么是假设检验:(教材原话,很容易理解)
假设检验原理图:
均值假设检验原理(理解重点):
单个总体均值假设检验步骤:
分位数的理解:
(附教材)
统计量规定
单个总体检验的扩展:
分为三类情况讨论:
单侧检验:
重点
Python代码(含例题答案)
def ztest_simple(xb, sigma,sample_num, mu0, side='both'):
"""
显著水平为0.05
参数:
xb- 样本均值
sigma- 样本的标准差
sample_num- 样本容量
mu0- H0假设的均值
side取值
'both'- 双边检验
'left'- 左侧检验
'right'- 右侧检验
返回值: 字典形式的p:若p值大于0.5,接受原假设。否则,拒绝原假设。
"""
Z = stats.norm(loc=0, scale=1)
z0=(xb-mu0)/(sigma/np.sqrt(sample_num))
if side=='both':
z0=np.abs(z0)
tmp = Z.sf(z0)+Z.cdf(-z0)
return {"p": tmp}
elif side=='left':
tmp = Z.cdf(z0)
return {"p": tmp}
elif side == 'right':
tmp = Z.sf(z0)
return {"p": tmp}
print(ztest_simple(10.48, 0.15, 15, 10.5, side='both'))
"""{'p_val': 0.6055766163353541}"""
因为0.6>0.05,故接受原假设