假设检验之单个总体均值检验(含Python代码)

这篇博客介绍了统计学中的假设检验概念,重点讲解了单个总体均值的假设检验步骤,并通过Python代码展示了如何进行双边、单侧检验。文章还包含了分位数的理解以及统计量的规定,帮助读者深入理解假设检验的实践应用。
摘要由CSDN通过智能技术生成

什么是假设检验:(教材原话,很容易理解)

 假设检验原理图:

 均值假设检验原理(理解重点):

 

单个总体均值假设检验步骤:

 

 

 

 分位数的理解:

(附教材) 

统计量规定

 单个总体检验的扩展:

 

分为三类情况讨论:

 

 

 单侧检验:

 

 

 重点

 Python代码(含例题答案)

def ztest_simple(xb, sigma,sample_num, mu0, side='both'):
    """
    显著水平为0.05
    参数:
        xb- 样本均值
        sigma- 样本的标准差
        sample_num- 样本容量
        mu0- H0假设的均值
        side取值
            'both'- 双边检验
            'left'- 左侧检验
            'right'- 右侧检验
    返回值: 字典形式的p:若p值大于0.5,接受原假设。否则,拒绝原假设。
    """
    Z = stats.norm(loc=0, scale=1)
    z0=(xb-mu0)/(sigma/np.sqrt(sample_num))
    if side=='both':
        z0=np.abs(z0)
        tmp = Z.sf(z0)+Z.cdf(-z0)
        return {"p": tmp}
    elif side=='left':
        tmp = Z.cdf(z0)
        return {"p": tmp}
    elif side == 'right':
        tmp = Z.sf(z0)
        return {"p": tmp}


print(ztest_simple(10.48, 0.15, 15, 10.5, side='both'))
"""{'p_val': 0.6055766163353541}"""

 因为0.6>0.05,故接受原假设

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值