Python绘制高斯分布(正态分布)图像,附python绘图技巧

高斯分布也称为正态分布,其概率密度函数如下: 

使用Python绘制正态分布曲线,借助matplotlib绘图工具。 代码如下:

# plot Gaussian Function
# 注:正态分布也叫高斯分布
import matplotlib.pyplot as plt
import numpy as np

u1 = 0  # 第一个高斯分布的均值
sigma1 = 1  # 第一个高斯分布的标准差

u2 = 1  # 第二个高斯分布的均值
sigma2 = 2  # 第二个高斯分布的标准差
x = np.arange(-5, 5, 0.1)
# 表示第一个高斯分布函数
y1 = np.multiply(np.power(np.sqrt(2 * np.pi) * sigma1, -1), np.exp(-np.power(x - u1, 2) / 2 * sigma1 ** 2))
# 表示第二个高斯分布函数
y2 = np.multiply(np.power(np.sqrt(2 * np.pi) * sigma2, -1), np.exp(-np.power(x - u2, 2) / 2 * sigma2 ** 2))

plt.rcParams['font.sans-serif'] = ['SimHei']  # 解决pythonmatplotlib绘图无法显示中文的问题
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

plt.subplot(121)
plt.plot(x, y1, 'b-', linewidth=2)
plt.title("高斯分布函数图像")

plt.subplot(122)
plt.plot(x, y2, 'r-', linewidth=2)
plt.title('高斯分布函数图像')
plt.show()

输出结果如下:

另外python绘图小技巧如下,哪天python绘图显示异常可以回来看看~~ :

# python 绘图中的技巧(显示中文标签,显示负号,共用x轴,设置轴的属性等)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig=plt.figure(figsize=(10,6))#设置画布大小
ax=fig.add_subplot(111)#设置子图一行一列第一个
ax.spines['left'].set_color ('r')#设置左轴的颜色
ax.tick_params( axis='y',direction='out', colors='red',
            labelcolor='r',   labelsize=10)#设置y轴颜色,外凸,字体大小,y轴标签颜色
ax.set_yticks(range(160, 320, 20))#设置y轴标签显示范围以及间隔
ax2 = ax.twinx()#共享x轴
ax3.invert_yaxis()#反转y轴
ax3.set_xlim(20,32)#设置x轴的范围

附一个正态分布的比较正式的代码(可以参考下):

#-*-coding:utf-8-*-
"""
python绘制标准正态分布曲线
"""
# ==============================================================
import numpy as np
import math
import matplotlib.pyplot as plt


def gd(x, mu=0, sigma=1):
  """根据公式,由自变量x计算因变量的值

  Argument:
    x: array
      输入数据(自变量)
    mu: float
      均值
    sigma: float
      方差
  """
  left = 1 / (np.sqrt(2 * math.pi) * np.sqrt(sigma))
  right = np.exp(-(x - mu)**2 / (2 * sigma))
  return left * right


if __name__ == '__main__':
  # 自变量
  x = np.arange(-4, 5, 0.1)
  # 因变量(不同均值或方差)
  y_1 = gd(x, 0, 0.2)
  y_2 = gd(x, 0, 1.0)
  y_3 = gd(x, 0, 5.0)
  y_4 = gd(x, -2, 0.5)

  # 绘图
  plt.plot(x, y_1, color='green')
  plt.plot(x, y_2, color='blue')
  plt.plot(x, y_3, color='yellow')
  plt.plot(x, y_4, color='red')
  # 设置坐标系
  plt.xlim(-5.0, 5.0)
  plt.ylim(-0.2, 1)

  ax = plt.gca()
  ax.spines['right'].set_color('none')
  ax.spines['top'].set_color('none')
  ax.xaxis.set_ticks_position('bottom')
  ax.spines['bottom'].set_position(('data', 0))
  ax.yaxis.set_ticks_position('left')
  ax.spines['left'].set_position(('data', 0))

  plt.legend(labels=['$\mu = 0, \sigma^2=0.2$', '$\mu = 0, \sigma^2=1.0$', '$\mu = 0, \sigma^2=5.0$', '$\mu = -2, \sigma^2=0.5$'])
  plt.show()

以上代码输出结果:

爬虫Python学习是指学习如何使用Python编程语言来进行网络爬取和数据提取的过程。Python是一种简单易学且功能强大的编程语言,因此被广泛用于爬虫开发。爬虫是指通过编写程序自动抓取网页上的信息,可以用于数据采集、数据分析、网站监测等多个领域。 对于想要学习爬虫的新手来说,Python是一个很好的入门语言。Python的语法简洁易懂,而且有丰富的第三方库和工具,如BeautifulSoup、Scrapy等,可以帮助开发者更轻松地进行网页解析和数据提取。此外,Python还有很多优秀的教程和学习资源可供选择,可以帮助新手快速入门并掌握爬虫技能。 如果你对Python编程有一定的基础,那么学习爬虫并不难。你可以通过观看教学视频、阅读教程、参与在线课程等方式来学习。网络上有很多免费和付费的学习资源可供选择,你可以根据自己的需求和学习风格选择适合自己的学习材料。 总之,学习爬虫Python需要一定的编程基础,但并不难。通过选择合适的学习资源和不断实践,你可以逐步掌握爬虫的技能,并在实际项目中应用它们。 #### 引用[.reference_title] - *1* *3* [如何自学Python爬虫? 零基础入门教程](https://blog.csdn.net/zihong523/article/details/122001612)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [新手小白必看 Python爬虫学习路线全面指导](https://blog.csdn.net/weixin_67991858/article/details/128370135)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值