关于本科期间参加人工智能方向竞赛的建议

本文分享了作者本科期间参加人工智能竞赛的经历,包括各类比赛和成果,重点介绍了硬件加速的概念及其在CPU、GPU、ASIC和FPGA等平台的应用。建议参赛者根据专业方向选择合适的领域,初期多参考项目提升工程能力,善用外部资源,逐步深入从高层到底层的开发过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

比赛建议

作者本人经历

本科期间我参加过的竞赛包括2020Intel杯电赛嵌入式邀请赛(国二)、2021电赛无人机赛题、2020和2021的华为云无人车挑战杯(全国第4)、2020和2021的中国高校计算机大赛人工智能创意赛(国二、国三)、2020集成电路创新创业大赛(国三)。还有例如Nv和阿里云举办的异构计算挑战赛(TensorRT加速)、两届的Xilinx全球自适应计算大赛(都是获得发放免费硬件资格的项目)、RoboMaster2021全国二等奖(雷达站负责人)。
其中的工作都是集中与目标检测和分类算法的实现和硬件加速

何为硬件加速

简单讲就是利用硬件的特点,完成高效计算,减小推理的时延和功耗。目前该领域的方向主要有:CPU(OpenVINO)、GPU(CUDA、TensorRT等)、专用ASIC(华为Ascend 310,910、Intel神经计算棒系列、寒武纪思元系列等)、FPGA(Xilinx ZYNQ、ZYNQ UltraScale+、Alveo、ACAP、KRIA系列等)。设计到的软硬件工具非常多和复杂,并且每一类都有其优势和缺点,有时需要根据具体应用来选择。同时,不同厂商有着不同的设计策略(或者说刀法),定位相同的产品存在竞争,不同定位的又在绝对性能上较劲。本专栏就是为了梳理这些问题

建议

根据自己的专业方向选择

首先,虽然人工智能这个行业很火,但也很卷。我算是独辟蹊径选择了硬件加速这个小方向。一方面是处于对硬件的喜爱,另一方面就是不太看好短时间内算法的突飞猛进,而且算法开发往往需要很多算力支撑。
其次,需要考虑你本身的专业方向。我是电子信息工程方向,所学习的课程包括数字信号处理、信号与系统、高数高代概率论等课程。这些一定程度为人工智能的学习和硬件部署打好基础。同时,本人比较热衷于开发,对硬件很感兴趣,再加上自己在时间和金钱上的投入,才能有上面还不错的成绩。
所以在选择时要考虑自己的专业方向和专业能力,如果你能力强能把上述前置内容都学会,那当然更好。

前期多参考别人的项目,提高工程能力

我的学习路线大致如下:首先是在树莓派上学习Linux的使用和python环境的配置等内容,其次就是在树莓派上运行了Intel计算棒的例程,之后购入Jetson学习了GPU加速和TensorRT使用,之后在比赛中熟悉Ascend芯片的使用,以及Intel OpenVINO HDDL-R8加速卡上的开发。并在之后完成了深度学习框架从算法开发到部署在GPU上的全部流程。再之后学习FPGA的深度学习模型部署,并在两年连续申请了Xilinx自适应计算大赛的硬件。

多借助外部资源提升自我

我的很多项目硬件都不是自己花钱。自己需要出辅助性的部分。比如我开始学算法借助Colab的资源和百度AIStudio的资源。学习树莓派是自己买的,学习GPU是借助学校大创的经费和RoboMaster的队内经费。学习ASIC开发是借助Intel杯比赛的经费,学习Ascend是借助华为云无人车比赛的经历。学习FPGA是借助Xilinx自适应计算大赛的机会。总之,做好准备,寻找机会,抓住机会。

从高层到底层的开发

如果一开始让你看到底层代码,往往会很劝退。所以建议先从项目的功能性上入手,体会各个功能如何通过调用实现,尝试把多个功能组装。这基本就是你毕设的水平。在开发能力达到一定程度时,阅读算法源码,阅读硬件部署的源码(layer转换和GPU、ASIC编程等),对已有的东西进行优化和提升,这是条循序渐进的道路。

<think>嗯,用户问的是华南师范大人工智能人工智能专业复试的情况。首先,我需要确定用户的需求是什么。可能他们正在准备申请这个专业的硕士,需要了解复试的具体内容、流程、准备方法等等。也有可能他们想比较不同校的复试难度,或者了解该专业的特色。 接下来,我得考虑用户的身份。可能是本科毕业生,或者是已经工作想考研的人士。如果是应届生,可能更关注考试科目和复习资料;如果是跨专业考生,可能需要了解是否有加试或者对背景的要求。此外,用户可能对复试的形式(线上还是线下)、时间安排、导师选择等方面也感兴趣。 然后,需要确认华南师范大人工智能院的具体情况。比如,该院成立时间不长,可能更注重人工智能的前沿领域,如机器习、自然语言处理等。复试内容可能包括笔试和面试,笔试科目可能涉及数据结构、算法、编程等,面试可能涉及专业知识、项目经验、英语能力等。 还要考虑用户可能没有直接问到的深层需求。比如,他们可能想知道复试的竞争激烈程度,录取比例,或者是否有特别的准备建议。此外,可能关心是否有科研机会、导师资源、就业前景等,但用户当前的问题集中在复试上,所以需要优先回答复试相关信息。 需要确保信息准确,所以最好参考华南师范大的官方网站或最新发布的复试通知。但作为通用信息,可以总结一般复试的常见内容,并结合该校特色。比如,该院可能有较强的产研结合,复试时可能会看重项目经验或竞赛经历。 最后,回答时要结构清晰,分点说明,涵盖复试科目、流程、准备建议和注意事项,这样用户能快速获取所需信息。同时提醒用户及时关注官方通知,因为每年的具体要求可能有变化。</think>华南师范大人工智能院的人工智能专业复试是硕士研究生招生的重要环节,主要考察生的专业基础、科研潜力和综合素质。以下是一般性介绍和准备建议(具体以**当年官方通知**为准): --- ### **一、复试内容与形式** 1. **专业课笔试** - **科目**:通常涉及人工智能基础、数据结构与算法、机器习、编程能力(如Python/C++)等内容。 - **参考书目**:可能包括《机器习》(周志华)、《人工智能:现代方法》等,建议参考院官网公布的考试大纲。 2. **综合面试** - **专业知识**:提问人工智能核心领域(如深度习、自然语言处理、计算机视觉等)的基础理论与应用。 - **项目/竞赛经历**:重点阐述本科期间参与的科研项目、竞赛(如Kaggle、数建模)或毕业设计。 - **英语能力**:可能包含英语自我介绍、文献翻译或口语问答。 3. **机试(部分年份可能设置)** - 考察编程能力与算法实践,题目难度类似LeetCode中等难度,涉及动态规划、数据结构等。 --- ### **二、复试流程(参考往年)** 1. **资格审查**:提交本科成绩单、身份证、历证明等材料。 2. **笔试**:限时答题,侧重基础理论与逻辑分析。 3. **面试**:多对一问答,时长约15-20分钟。 4. **英语测试**:可能单独考核或融入面试环节。 --- ### **三、准备建议** 1. **夯实专业基础**:重点复习机器习、深度习、算法设计等核心课程。 2. **实践能力提升**:熟悉Python编程框架(如PyTorch、TensorFlow),复现经典算法或准备个人项目。 3. **模拟面试**:针对简历中的经历准备逻辑清晰的表述,练习英语口语。 4. **关注前沿动态**:了解院研究方向(如智能教育、大数据分析等),阅读导师近期论文。 --- ### **四、注意事项** 1. **信息渠道**:关注院官网或研招网,及时获取复试细则(如线上/线下形式、成绩占比)。 2. **联系导师**:复试前可邮件联系意向导师,附个人简历与科研兴趣陈述。 3. **调剂政策**:若未达第一志愿分数线,可关注院其他相关专业的调剂机会。 --- 如需更具体的信息(如近年分数线、报录比等),建议直接咨询院招生办或查看华南师范大研究生招生信息网。祝你复试顺利!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

·空感自诩”

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值