在训练过程中跑验证集导致显存out of memory问题。

本文介绍了在使用PyTorch训练模型时遇到的显存溢出问题。作者发现,在每个epoch训练结束后进行验证时,由于计算梯度导致显存加倍并引发错误。解决方案是在验证阶段使用`torch.no_grad()`上下文管理器,这样可以防止计算梯度,从而避免显存溢出。修改后的训练流程有效地解决了这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


前言

在训练模型时,笔者想要每训练一个epoch,记录一下val的准确率,但是每当训练完第一个epoch开始准备跑val数据集的时候,就会出现显存double然后溢出的情况(batch_size在验证和训练时设置相同)。此处将复现笔者出现的问题,并给出解决方案。

正文

原始训练流程:

for eopch in epochs:
	for data,label in train_dataloader:
		model.train()
		train(model,data,label)
	model.eval()
	val(model,test_dataloader)
	#会在执行val的时候显存double,然后out of memory。

改进后训练流程:

for eopch in epochs:
	for data,label in train_dataloader:
		model.train()
		train(model,data,label)
	model.eval()
	with torch.no_grad():
		val(model,test_dataloader)

此时显存不再溢出。

总结

在模型验证时,仍计算梯度,导致模型显存溢出。加上with torch.no_grad():问题解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值