论文中的好文佳句摘录

本文介绍了如何在Faster R-CNN框架中使用特征金字塔网络(FPN)实现最先进的单模型目标检测结果,无需复杂的深度学习技巧。FPN简化了模型优化过程,使得普通用户也能获得优秀性能。同时,文章回顾了2019年关于图卷积网络(ML-GCN)的研究,强调其在处理复杂结构数据时的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Using FPN in a basic Faster  R-CNN system, our method achieves state-of-the-art single model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners.  

个人理解:(without bells and whistles)没有那么多花里胡哨,就是指没用深度神经网络的各种trick,任何人都可以不通过各种精调,扩大训练集,hard online, 学习率啊,参数啊什么的调整,就可以达到比较好的效果.所以方法本质就是好的,是必然性的,而不是偶然的技巧提升了模型的性能。

---摘自摘要 2016特征金字塔 FPN

3.2. Graph Convolutional Network Recap   (重述要点)

---摘自摘要 2019 ML-GCN 标题的使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值