矢量场的旋度----环量和旋度

1、环量

如果矢量场是:$\vec{A}(x,y,z)=A_x(x,y,z)\vec{e_x}+A_y(x,y,z)\vec{e_y}+A_z(x,y,z)\vec{e_z}$

取有向的闭合曲线$\vec{l}$ ,闭合曲线所限定的曲面的正法线方向符合右手螺旋定则。

环量定义:$Q=\oint_l\vec{A}\cdot d\vec{l}$

空间中可以有无穷多个曲面共同构成,也可以由无穷多个有限曲线一个叠加一个构成。所以我们只需要研究任意一个环路上面的情况就足以反应这个场。但是这只是一种整体的概念,我们就同一个环路来说,他的大小几何形状不变,但是我们要注意他的空间的方位不一样,所以对A的积分值也是不一样的。

举例:如果我们的河流里面有我们的流速场,不妨说在这个地方有个漩涡就是我们的流线。如果沿着这个流线对速度进行积分的话,环量不等于0。那么如果环量不等于0,我们就可以推断这个地方肯定有漩涡。如果我们的积分环路和这个流速方向垂直的话,环量等于0

因此我们可以看到环量具有工程概念,如果我们在某一点的领域,沿某一个环路对矢量进行积分,结果不等于0,我们可以初步判定这个地方有没有漩涡。但是漩涡会围着一个轴转,我们想知道轴在哪里?当我们积分的路径和这个轴所垂直的平面在一个平面的时候,积分最大。所以轴和积分路径的发现方向垂直时,环量最大。因此我们关心的问题是,同样一个环路,不同的方向n什么时候环量最大。这样就引入了我们所谓的旋度

2、旋度

$q=\lim_{\Delta s\to0}\frac{\oint_l\vec{A}\cdot d\vec{l}}{\Delta s}$某一点单位面积内的环量,即环量密度

在直角坐标系中可以写出:

$q=(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\cos\alpha+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\cos\beta+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\cos\gamma $

n方向的单位矢量:

$\overrightarrow{n_{0}}=\cos\alpha\overrightarrow{e_{x}}+\cos\beta\overrightarrow{e_{y}}+\cos\gamma\overrightarrow{e_{z}}$

我们取一个矢量:

$\vec{v}=(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec{e_x}+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec{e_y}+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec{e_z}$

那么环量密度等于$q=\vec{\nu}\cdot\vec{n_{0}}$n方向的环量密度就是这个v矢量在这个方向的投影。如果n和v的方向一致得到最大的环量密度v的方向就是环量密度最大的方向。就是漩涡所在平面垂直的轴的方向。我们把这个矢量就称作他在这一点的旋度

旋度定义公式:


前言知识

场的概念---数量场(标量场)和矢量场介绍理解-CSDN博客

数量场(标量场)的方向导数及梯度推导、哈密顿算符定义-CSDN博客

矢量场的散度----通量和散度概念讲解-CSDN博客

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值