四、矢量场的环量和旋度、斯托克斯定理

1、定义

矢量场 A \pmb A A 沿闭合回路 L L L 的线积分称为环量,用 Γ A \Gamma_A ΓA 表示环量,则有
Γ A = ∮ L A ⋅ d l (1) \Gamma_A=\oint_L \pmb{A\cdot}d\pmb{l}\tag{1} ΓA=LAdl(1)
Δ S \Delta S ΔS 为闭合曲线 L L L 包围的面积, e n \pmb{e_n} en Δ S \Delta S ΔS 的右旋单位法线矢量。设想回路 L L L 逐渐缩小,最后缩到空间某点 P P P。当 Δ S → 0 \Delta S\rightarrow0 ΔS0 时, Γ A \Gamma_A ΓA 也趋于0。若两者之比有一极限,则这极限值为矢量场 A \pmb A A 的旋度(它是个矢量)在 e n \pmb e_n en 上的投影。 A \pmb A A 的旋度记作 c u r l \rm curl curl A \pmb A A r o t \rm rot rot A \pmb A A,或 ▽ × A \pmb \triangledown\times A ×A。上述定义可写作
( ▽ × A ) n = lim ⁡ Δ → 0 Γ A Δ S = lim ⁡ Δ → 0 ∮ L A ⋅ d l Δ S (2) (\triangledown\times\pmb A)_n=\lim_{\Delta\rightarrow 0}\frac{\Gamma_A}{\Delta S}=\lim_{\Delta\rightarrow 0}\frac{\oint_L \pmb A\cdot d\pmb l}{\Delta S}\tag{2} (×A)n=Δ0limΔSΓA=Δ0limΔSLAdl(2)
矢量场的旋度也是个矢量场

2、旋度的坐标表达式

在这里插入图片描述

旋度直角坐标表示式的推导

下面我们来研究旋度的直角坐标表达式。先看旋度的 x x x 分量。如上图(a),取一个与 x x x 轴垂直的矩形回路 L x L_x Lx,它的边分别与 y , z y,z y,z 轴平行,边长为 $\Delta $ 和 Δ z \Delta z Δz,取回路 L x L_x Lx 的环绕方向,使它的右旋法线 e n \pmb e_n en 指向 + x +x +x 方向。设回路的中心 P P P 点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),则在 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4 四边上的矢量场 A \pmb A A 沿回路元的平行分量是 A z ( x , y + Δ y / 2 , z ) , − A y ( x , y , z + Δ z / 2 ) , − A z ( x , y − Δ y / 2 , z ) , A y ( x , y , z − Δ z / 2 ) A_z(x,y+\Delta y /2,z),-A_y(x,y,z+\Delta z/2),-A_z(x,y-\Delta y/2,z),A_y(x,y,z-\Delta z/2) Az(x,y+Δy/2,z),Ay(x,y,z+Δz/2),Az(x,yΔy/2,z),Ay(x,y,zΔz/2)
所以
∮ L x A ⋅ d l = A z ( x , y + Δ y / 2 , z ) Δ z − A z ( x , y , − Δ y / 2 ) Δ z − A y ( x , y , z + Δ z / 2 ) Δ y + A y ( x , y , z − Δ z / 2 ) Δ y (3) \begin{aligned} \oint_{L_x}\pmb A\pmb \cdot d \pmb l&=A_z(x,y+\Delta y/2,z)\Delta z\\ &-A_z(x,y,-\Delta y/2)\Delta z\\ &-A_y(x,y,z+\Delta z/2)\Delta y\\ &+A_y(x,y,z-\Delta z/2)\Delta y\tag{3} \end{aligned} LxAdl=Az(x,y+Δy/2,z)ΔzAz(x,y,Δy/2)ΔzAy(x,y,z+Δz/2)Δy+Ay(x,y,zΔz/2)Δy(3)
围绕 P P P 点将 A y , A z A_y,A_z Ay,Az 按泰勒级数展开:
A y ( x , y , z ± Δ z / 2 ) = A y ( x , y , z ) ± ∂ A y ∂ z Δ z 2 + 高次项 A z ( x , y ± Δ y / 2 , z ) = A z ( x , y , z ) ± ∂ A z ∂ y Δ y 2 + 高次项 (4) A_y(x,y,z\pm\Delta z/2)=A_y(x,y,z)\pm\frac{\partial A_y}{\partial z}\frac{\Delta z}{2}+高次项\\ \quad\\ A_z(x,y\pm\Delta y/2,z)=A_z(x,y,z)\pm\frac{\partial A_z}{\partial y}\frac{\Delta y}{2}+高次项\tag{4} Ay(x,y,z±Δz/2)=Ay(x,y,z)±zAy2Δz+高次项Az(x,y±Δy/2,z)=Az(x,y,z)±yAz2Δy+高次项(4)
带入前式,得
∮ L x A ⋅ d l = ( ∂ A z ∂ y − ∂ A y ∂ z ) Δ y Δ z + 高次项 (5) \oint_{L_x}\pmb A\pmb \cdot d \pmb l=\big(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}\big)\Delta y\Delta z+ 高次项\tag{5} LxAdl=(yAzzAy)ΔyΔz+高次项(5)
因为回路 L x L_x Lx 包围的矩形面积为 Δ S = Δ y Δ z \Delta S=\Delta y\Delta z ΔS=ΔyΔz,按照旋度的定义式(2),得
( ▽ × A ) x ≡ lim ⁡ Δ S → 0 ∮ L x A ⋅ d l Δ S = lim ⁡ Δ y → 0 , Δ z → 0 ( ∂ A z ∂ y − ∂ A y ∂ z ) Δ y Δ z + 高次项 Δ y Δ z = ∂ A z ∂ y − ∂ A y ∂ z (6) \begin{aligned} (\triangledown\times\pmb A)_x&\equiv\lim_{\Delta S\rightarrow 0}\frac{\oint_{L_x}\pmb A \pmb\cdot d\pmb l}{\Delta S}\\ &=\lim_{\Delta y\rightarrow 0,\Delta_z\rightarrow 0}\frac{\big(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}\big)\Delta y\Delta z + 高次项}{\Delta y\Delta z}\\ &=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z} \end{aligned}\tag{6} (×A)xΔS0limΔSLxAdl=Δy0,Δz0limΔyΔz(yAzzAy)ΔyΔz+高次项=yAzzAy(6)
同理可以得到旋度的 y , z y,z y,z 两个分量。现将全部分量的直角坐标表示罗列如下:
{ ( ▽ × A ) x = ∂ A z ∂ y − ∂ A y ∂ z , ( ▽ × A ) y = ∂ A x ∂ z − ∂ A z ∂ x , ( ▽ × A ) z = ∂ A y ∂ x − ∂ A x ∂ y , (7) \begin{cases} (\triangledown\times\pmb A)_x=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z},\\ \quad\\ (\triangledown\times\pmb A)_y=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x},\\ \quad\\ (\triangledown\times\pmb A)_z=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y},\\ \end{cases}\tag{7} (×A)x=yAzzAy,(×A)y=zAxxAz,(×A)z=xAyyAx,(7)
旋度矢量的直角坐标表达式为
▽ × A = ( ∂ A z ∂ y − ∂ A y ∂ z ) i + ( ∂ A x ∂ z − ∂ A z ∂ x ) j + ( ∂ A y ∂ x − ∂ A x ∂ y ) k = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ (8) \begin{aligned} \triangledown\times\pmb A&=\big(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}\big)\pmb i+\big(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}\big)\pmb j+\big(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}\big)\pmb k\\ &=\begin{vmatrix}\pmb i &\pmb j &\pmb k \\ \quad\\ \frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\ \quad\\ A_x &A_y &A_z\end{vmatrix} \end{aligned}\tag{8} ×A=(yAzzAy)i+(zAxxAz)j+(xAyyAx)k= ixAxjyAykzAz (8)
下面不加推导地给出旋度在其他常用坐标中的表达式,必备参考。
柱坐标
▽ × A = ( 1 ρ ∂ A z ∂ φ − ∂ A φ ∂ z ) e ρ + ( ∂ A ρ ∂ z − ∂ A z ∂ ρ ) e φ + 1 ρ ( ∂ ( ρ A φ ) ∂ ρ − ∂ A ρ ∂ φ ) e z (9) \triangledown\times\pmb A=\big(\frac{1}{\rho}\frac{\partial A_z}{\partial \varphi}-\frac{\partial A_\varphi}{\partial z}\big)\pmb e_\rho +\big(\frac{\partial A_\rho}{\partial z}-\frac{\partial A_z}{\partial \rho}\big)\pmb e_\varphi +\frac{1}{\rho}\big(\frac{\partial (\rho A_\varphi)}{\partial \rho}-\frac{\partial A_\rho}{\partial \varphi}\big)\pmb e_z\tag{9} ×A=(ρ1φAzzAφ)eρ+(zAρρAz)eφ+ρ1(ρ(ρAφ)φAρ)ez(9)
球坐标
▽ × A = [ 1 r sin ⁡ θ ( ∂ ∂ θ ( sin ⁡ θ A φ ) − ∂ A θ ∂ φ ) ] e r + [ 1 r sin ⁡ θ ∂ A r ∂ φ − 1 r ( ∂ ∂ r ( r A φ ) ) ] e θ + [ 1 r ∂ ( r A θ ) ∂ r − 1 r ∂ A r ∂ θ ] e φ (10) \triangledown\times\pmb A =\big[\frac{1}{r\sin\theta}\big(\frac{\partial}{\partial\theta}(\sin\theta A_\varphi)-\frac{\partial A_\theta}{\partial \varphi}\big)\big]\pmb e_r +\big[\frac{1}{r\sin\theta}\frac{\partial A_r}{\partial \varphi}-\frac{1}{r}\big(\frac{\partial}{\partial r}(rA_\varphi)\big)\big]\pmb e_\theta +\big[\frac{1}{r}\frac{\partial(rA_\theta)}{\partial r}-\frac{1}{r}\frac{\partial A_r}{\partial \theta}\big]\pmb e_\varphi\tag{10} ×A=[rsinθ1(θ(sinθAφ)φAθ)]er+[rsinθ1φArr1(r(rAφ))]eθ+[r1r(rAθ)r1θAr]eφ(10)

3、斯托克斯定理

在这里插入图片描述

斯托克斯定理的证明

在矢量场 A ( x , y , z ) \pmb {A}(x,y,z) A(x,y,z) 中取任意闭合回路 L L L,现用一条曲线搭在回路 L L L 上的 M , N M,N M,N 两点之间。 M M M N N N L L L 分为 L 1 ′ L_1^\prime L1 L 2 ′ L_2^\prime L2 两部分,如上图(a)。 L 1 ′ L_1^\prime L1 M N MN MN 组成新的闭合回路 L 1 L_1 L1 L 2 ′ L_2^\prime L2 M N MN MN 组成新的闭合回路 L 2 L_2 L2 L 1 L_1 L1 L 2 L_2 L2 的环绕方向一致,沿 L 1 L_1 L1 L 2 L_2 L2 的环量分别是
Γ 1 ≡ ∮ L 1 A ⋅ d l = ∫ L 1 ′ A ⋅ d l + ∫ M N A ⋅ d l , Γ 2 ≡ ∮ L 2 A ⋅ d l = ∫ L 2 ′ A ⋅ d l + ∫ N M A ⋅ d l . (11) \Gamma_1\equiv\oint_{L_1}\pmb{A\cdot}d\pmb l=\int_{L_1^\prime}\pmb{A\cdot}d\pmb l+\int_M^N\pmb{A\cdot}d\pmb l,\\ \quad\\ \Gamma_2\equiv\oint_{L_2}\pmb{A\cdot}d\pmb l=\int_{L_2^\prime}\pmb{A\cdot}d\pmb l+\int_N^M\pmb{A\cdot}d\pmb l.\tag{11} Γ1L1Adl=L1Adl+MNAdl,Γ2L2Adl=L2Adl+NMAdl.(11)

Γ 1 + Γ 2 = ∫ L 1 ′ A ⋅ d l + ∫ L 2 ′ A ⋅ d l = ∮ L A ⋅ d l ≡ Γ (12) \Gamma_1+\Gamma_2=\int_{L_1^\prime}\pmb{A\cdot}d\pmb l+\int_{L_2^\prime}\pmb{A\cdot}d\pmb l=\oint_L\pmb{A\cdot}d\pmb l\equiv\Gamma\tag{12} Γ1+Γ2=L1Adl+L2Adl=LAdlΓ(12)
即矢量场在闭合回路 L L L 上的环量等于分割出来的两个闭合回路 L 1 L_1 L1 L 2 L_2 L2 上的环量之和。如图(b),用许多曲线,像织成的网子一样绷在回路 L L L 的“框架”上,则每个网眼是一个闭合回路 L i L_i Li,令它们的环绕方向都一致,用 Γ i \Gamma_i Γi 代表 L i L_i Li 上的环量,则有
Γ = ∑ i = 1 n Γ i (13) \Gamma=\sum_{i=1}^n \Gamma_i\tag{13} Γ=i=1nΓi(13)
这就是说, L L L 上的环量是由各局部的环量累积起来的。
如果把上述分割过程无限继续下去,使每个小回路的面积 Δ S i \Delta S_i ΔSi 都区域0,则按照旋度的定义,
Γ i ≡ ∮ L A ⋅ d l = ( ▽ × A ) n i Δ S i = ( ▽ × A ) ⋅ Δ S i (14) \Gamma_i\equiv\oint_L\pmb{A\cdot}d\pmb l=(\triangledown\times\pmb A)_{ni}\Delta S_i=(\triangledown\times\pmb A)\pmb{\cdot}\Delta S_i\tag{14} ΓiLAdl=(×A)niΔSi=(×A)ΔSi(14)
这里 ( ▽ × A ) n i (\triangledown\times\pmb A)_{ni} (×A)ni代表旋度 ( ▽ × A ) (\triangledown\times\pmb A) (×A) Δ S i \Delta S_i ΔSi 的右旋单位法线矢量 e n i \pmb e_{ni} eni 上的投影, Δ S i = e n i Δ S i \Delta \pmb{S_i}=\pmb {e_{ni}}\Delta S_i ΔSi=eniΔSi 是矢量面元,带入式(13),得
Γ ≡ ∮ L A ⋅ d l = ∑ i = 1 n ( ▽ × A ) ⋅ Δ S i (15) \Gamma\equiv\oint_L\pmb{A\cdot}d\pmb l=\sum_{i=1}^n (\triangledown\times\pmb A)\pmb{\cdot}\Delta \pmb S_i\tag{15} ΓLAdl=i=1n(×A)ΔSi(15)
取极限后,右端变为面积分:
∮ L A ⋅ d l = ∬ S ( ▽ × A ) ⋅ d S (16) \oint_L\pmb{A\cdot}d\pmb l=\iint_S(\triangledown\times\pmb A)\pmb{\cdot} d\pmb S\tag{16} LAdl=S(×A)dS(16)
式(16)表明:矢量场在任何闭合回路 L L L 上的环量等于以它为边界的曲面 S S S 上的旋度的积分。这就是斯托克斯定理。

4、备注

我们已经多次使用了符号 “ ▽ \triangledown ”,单一直是将它和一个场函数 Φ \Phi Φ A \pmb A A 连起来写,而未说明它单独代表什么。其实 ▽ \triangledown 是一个矢量性质的算符,叫做劈型算符那勃勒算符,也称矢量微分算子,它的直角坐标表达式为
▽ = i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z \triangledown =\pmb{i}\frac{\partial}{\partial x} +\pmb{j}\frac{\partial}{\partial y} +\pmb{k}\frac{\partial}{\partial z} =ix+jy+kz
我们可以把 ▽ \triangledown 形式地“乘”在一个标量场 Φ \Phi Φ 上,称为它的梯度 ▽ Φ \triangledown\Phi Φ,也可以把它形式地“点乘”或“叉乘”在一个矢量场 A \pmb A A 上,成为它的散度 ▽ ⋅ A \triangledown\pmb{\cdot A} A 或旋度 ▽ × A \triangledown\times\pmb A ×A,这样做的结果,我们得到的正是前面的式子。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据斯托克斯定理,对于一个向量$\vec{F}$,其旋度$\nabla \times \vec{F}$的面积分等于该向量在该曲面边界上的环量积分。因此,如果我们证明了该向量在任何封闭曲面上的环量积分都等于零,那么就可以证明该向量旋度恒等于零。 假设$\vec{F}$是一个向量,$S$是一个任意的封闭曲面,$C$是该曲面的边界曲线。根据斯托克斯定理,有: $$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}$$ 由于$S$是一个封闭曲面,因此可以将其分成若干个小曲面,每个小曲面都有一个相应的边界曲线。对于每个小曲面,我们可以将其上的向量$\vec{F}$分成两个部分:一个与该小曲面平行,一个与该小曲面垂直。由于与该小曲面平行的部分在环量积分中不会产生贡献,因此我们只需要考虑与该小曲面垂直的部分。 对于每个小曲面,我们可以将其上的向量$\vec{F}$表示为$\vec{F} = \nabla \phi$的形,其中$\phi$是一个标量。这是因为,对于任何向量$\vec{F}$,都可以找到一个标量$\phi$,使得$\vec{F} = \nabla \phi$。因此,我们可以将上中的$\vec{F}$替换为$\nabla \phi$,得到: $$\oint_C \nabla \phi \cdot d\vec{r} = \iint_S (\nabla \times \nabla \phi) \cdot d\vec{S}$$ 由于旋度算子$\nabla \times \nabla \phi$等于零,因此上右侧为零。因此,我们得到: $$\oint_C \nabla \phi \cdot d\vec{r} = 0$$ 由于$C$是任意的曲线,因此上对于任何封闭曲面$S$都成立。因此,我们证明了任何向量梯度的旋度恒等于零。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值