Fréchet Inception Distance (FID) 详解
目录
- 引言
- 什么是Fréchet Inception Distance (FID)
- FID的工作原理
- Inception网络简介
- 高维特征表示
- 统计分布假设
- FID的数学公式
- Fréchet距离定义
- FID的具体计算步骤
- 为什么使用FID
- FID的优缺点
- 如何计算FID
- 步骤一:提取特征
- 步骤二:计算均值和协方差
- 步骤三:计算Fréchet距离
- 代码实现
- Python代码示例
- 代码解读
- 结论
引言
在生成模型(如GAN和扩散模型)的评估中,衡量生成图像与真实图像的相似度是一个关键问题。Fréchet Inception Distance (FID) 是一种广泛使用的评估指标,它通过计算生成图像与真实图像在特征空间中的分布差异来量化两者的相似度。
什么是Fréchet Inception Distance (FID)
Fréchet Inception Distance(FID)是一种用于评估生成模型生成图像质量的指标。它通过比较生成图像和真实图像在特征空间中的分布差异,量化两者之间的距离。FID值越低,表示生成图像与真实图像越相似。
FID的工作原理
Inception网络简介
FID计算依赖于Inception网络,特别是Inception v3模型。Inception网络是一种预训练的卷积神经网络,常用于图像分类任务。它能够将图像映射到高维特征空间,有助于捕捉图像的语义信息。
高维特征表示
通过Inception网络,图像被转换为高维特征向量。这些特征向量能够有效地表示图像的内容和风格,是计算图像相似度的基础。
统计分布假设
FID假设生成图像和真实图像的特征向量分别服从多维高斯分布。通过比较这两个高斯分布的均值和协方差矩阵,FID量化了两者的差异。
FID的数学公式
Fréchet距离定义
Fréchet距离(也称为Wasserstein-2距离)用于衡量两个概率分布之间的差异。对于两个多维高斯分布 N ( μ 1 , Σ 1 ) \mathcal{N}(\mu_1, \Sigma_1) N(μ1,Σ1) 和 N ( μ 2 , Σ 2 ) \mathcal{N}(\mu_2, \Sigma_2) N(μ2,Σ2),其Fréchet距离定义为:
d 2 = ∣ ∣ μ 1 − μ 2 ∣ ∣ 2 2 + Tr ( Σ 1 + Σ 2 − 2 ( Σ 1 Σ 2 ) 1 / 2 ) d^2 = ||\mu_1 - \mu_2||^2_2 + \text{Tr}\left(\Sigma_1 + \Sigma_2 - 2(\Sigma_1 \Sigma_2)^{1/2}\right)