步进调频连续波(SFMCW)雷达详解
1. 引言
步进调频连续波雷达(Step-Frequency Modulated Continuous Wave Radar, SFMCW Radar)是一种常见的调频雷达,通过分步改变频率来获取目标的距离和速度信息。与传统的线性调频连续波雷达(FMCW)相比,SFMCW雷达通过将频率分步、离散地变化,可以更加灵活地实现超宽带测量。
2. 基本概念与术语
-
连续波(Continuous Wave, CW)
是指雷达发射的信号在时间上持续存在,不像脉冲雷达那样有明显的“开/关”过程。我们重点关注发射信号的频率随时间的变化。 -
步进调频(Step Frequency Modulation)
在一段时间内,雷达的发射频率按照一定的增量(步进)逐步变化,而不是线性变化。例如,每步频率增加一个固定的增量 Δ f \Delta f Δf,直到覆盖所需的带宽。 -
带宽(Bandwidth, BW)
步进调频雷达的总带宽是由步进频率 Δ f \Delta f Δf 和步数 N N N 决定的,即 B = N Δ f B = N \Delta f B=NΔf。 -
驻留时间(Dwell Time)
每步的持续时间,通常标记为 T s T_s Ts。该时间段内雷达信号的频率保持不变。
3. 原理概述
3.1 雷达测距的基本原理
雷达的工作原理是通过测量电磁波的发射和反射回来的时间来计算目标距离。传统的调频连续波(FMCW)雷达会通过线性改变频率,来产生“频差”,利用频差来推算距离。而步进调频雷达则是在多个离散频率点上分别测量,并通过后续信号处理合成宽带,从而实现高精度测距。
3.2 线性调频与步进调频的区别
-
线性调频(FMCW)
在线性调频中,雷达发射的信号频率在某段时间内从起始频率 f 0 f_0 f0 线性增长至 f 0 + B f_0 + B f0+B。回波信号的差频与目标的距离和速度成正比。对于线性调频雷达,其频差可表示为:
Δ f = 2 B T chirp ⋅ τ d , \Delta f = \frac{2B}{T_\text{chirp}} \cdot \tau_d, Δf=Tchirp2B⋅τd,
其中 T chirp T_\text{chirp} Tchirp 是每次调频的时长, τ d \tau_d τd 是目标的往返延迟。 -
步进调频(SFMCW)
步进调频雷达每次发射一个频率为 f n = f 0 + n Δ f f_n = f_0 + n \Delta f fn=f0+nΔf 的信号,其中 n n n 是步进的序号。每个频率点持续时间为 T s T_s Ts,直到完成 N N N 次步进,得到一个总的带宽 B = N Δ f B = N \Delta f B=NΔf。
4. 数学模型
4.1 发射信号
在第
n
n
n 步,发射信号的频率为
f
n
=
f
0
+
n
Δ
f
f_n = f_0 + n \Delta f
fn=f0+nΔf。发射信号可以表示为:
s
t
x
,
n
(
t
)
=
A
cos
(
2
π
f
n
t
)
=
A
cos
(
2
π
(
f
0
+
n
Δ
f
)
t
)
,
s_{tx,n}(t) = A \cos(2\pi f_n t) = A \cos \left( 2\pi \left( f_0 + n \Delta f \right) t \right),
stx,n(t)=Acos(2πfnt)=Acos(2π(f0+nΔf)t),
其中
A
A
A 为信号幅度,
t
t
t 为时间。
4.2 回波信号
假设目标距离为
R
R
R,电磁波往返的时间延迟为:
τ
d
=
2
R
c
,
\tau_d = \frac{2R}{c},
τd=c2R,
其中
c
c
c 是光速。目标的回波信号为:
s
r
x
,
n
(
t
)
=
A
′
cos
(
2
π
(
f
0
+
n
Δ
f
)
(
t
−
τ
d
)
)
,
s_{rx,n}(t) = A' \cos \left( 2\pi \left( f_0 + n \Delta f \right) (t - \tau_d) \right),
srx,n(t)=A′cos(2π(f0+nΔf)(t−τd)),
其中
A
′
A'
A′ 是回波的幅度,
τ
d
\tau_d
τd 为目标的传播延迟。
4.3 混频过程
在接收端,信号与本振信号混频,得到差频信号。将发射信号与回波信号进行乘积,我们得到混频后的基带信号:
s
mix
,
n
(
t
)
=
s
t
x
,
n
(
t
)
⋅
s
r
x
,
n
(
t
)
.
s_{\text{mix},n}(t) = s_{tx,n}(t) \cdot s_{rx,n}(t).
smix,n(t)=stx,n(t)⋅srx,n(t).
展开后:
s
mix
,
n
(
t
)
=
A
A
′
cos
(
2
π
(
f
0
+
n
Δ
f
)
t
)
⋅
cos
(
2
π
(
f
0
+
n
Δ
f
)
(
t
−
τ
d
)
)
.
s_{\text{mix},n}(t) = A A' \cos \left( 2\pi \left( f_0 + n \Delta f \right) t \right) \cdot \cos \left( 2\pi \left( f_0 + n \Delta f \right) (t - \tau_d) \right).
smix,n(t)=AA′cos(2π(f0+nΔf)t)⋅cos(2π(f0+nΔf)(t−τd)).
利用余弦乘法公式:
cos
(
A
)
cos
(
B
)
=
1
2
[
cos
(
A
−
B
)
+
cos
(
A
+
B
)
]
,
\cos(A) \cos(B) = \frac{1}{2} \left[ \cos(A - B) + \cos(A + B) \right],
cos(A)cos(B)=21[cos(A−B)+cos(A+B)],
我们可以得到两部分信号:
s
mix
,
n
(
t
)
=
A
A
′
2
[
cos
(
2
π
(
f
0
+
n
Δ
f
)
τ
d
)
+
cos
(
2
π
(
2
f
0
+
2
n
Δ
f
)
t
−
2
π
(
f
0
+
n
Δ
f
)
τ
d
)
]
.
s_{\text{mix},n}(t) = \frac{A A'}{2} \left[ \cos \left( 2\pi (f_0 + n \Delta f) \tau_d \right) + \cos \left( 2\pi \left( 2f_0 + 2n \Delta f \right) t - 2\pi (f_0 + n \Delta f) \tau_d \right) \right].
smix,n(t)=2AA′[cos(2π(f0+nΔf)τd)+cos(2π(2f0+2nΔf)t−2π(f0+nΔf)τd)].
其中,第一项为低频的差频信号,第二项为高频分量(通常被滤除)。
4.4 相位差与距离关系
差频信号的相位差与目标的传播延迟
τ
d
\tau_d
τd 有关。对于第
n
n
n 步的信号,我们得到:
ϕ
n
=
2
π
(
f
0
+
n
Δ
f
)
τ
d
.
\phi_n = 2\pi (f_0 + n \Delta f) \tau_d.
ϕn=2π(f0+nΔf)τd.
通过计算所有步进频率上的相位差,可以推算目标的传播延迟
τ
d
\tau_d
τd,进而得到目标的距离
R
R
R:
R
=
c
⋅
τ
d
2
.
R = \frac{c \cdot \tau_d}{2}.
R=2c⋅τd.
4.5 频域处理与距离分辨率
将所有的混频信号进行傅里叶变换,得到频域信号。假设在所有步进频率下的相位差集合为:
Φ
=
[
ϕ
0
,
ϕ
1
,
…
,
ϕ
N
−
1
]
.
\Phi = \left[ \phi_0, \phi_1, \dots, \phi_{N-1} \right].
Φ=[ϕ0,ϕ1,…,ϕN−1].
对这些相位值进行离散傅里叶变换(DFT):
S
(
k
)
=
∑
n
=
0
N
−
1
ϕ
n
e
−
i
2
π
N
k
n
,
S(k) = \sum_{n=0}^{N-1} \phi_n e^{-i \frac{2\pi}{N} k n},
S(k)=n=0∑N−1ϕne−iN2πkn,
其中
S
(
k
)
S(k)
S(k) 是频域信号,
k
k
k 为频域中的离散点索引。然后,分析得到的频谱
S
(
k
)
S(k)
S(k),可以通过频率解析计算出目标的距离信息。
4.6 距离分辨率
步进调频雷达的距离分辨率
Δ
R
\Delta R
ΔR 由雷达的总带宽
B
B
B 决定。根据经典的雷达分辨率公式:
Δ
R
=
c
2
B
.
\Delta R = \frac{c}{2B}.
ΔR=2Bc.
对于 SFMCW 雷达,总带宽
B
B
B 为
B
=
N
Δ
f
B = N \Delta f
B=NΔf,因此距离分辨率为:
Δ
R
=
c
2
N
Δ
f
.
\Delta R = \frac{c}{2N \Delta f}.
ΔR=2NΔfc.
5. 性能分析
5.1 带宽与分辨率
步进调频雷达的总带宽由步进频率 Δ f \Delta f Δf 和步数 N N N 决定。若总带宽 B B B 增加,则距离分辨率 Δ R \Delta R ΔR 提高。为了提高分辨率,我们需要选择适当的步进频率和步数。
5.2 扫描时间
雷达的扫描时间与步数
N
N
N 和每步的驻留时间
T
s
T_s
Ts 相关。总扫描时间为:
T
scan
=
N
⋅
T
s
.
T_\text{scan} = N \cdot T_s.
Tscan=N⋅Ts.
对于快速运动目标,长时间的扫描可能导致测量误差,因此在设计时需要根据应用场景优化步进时间和扫描频率。
6. 多普勒效应与速度测量
6.1 多普勒频移
在目标运动的情况下,回波信号会因为多普勒效应产生频移。目标的径向速度为
v
v
v,则多普勒频移
Δ
f
d
\Delta f_d
Δfd 为:
Δ
f
d
=
2
v
f
0
c
.
\Delta f_d = \frac{2 v f_0}{c}.
Δfd=c2vf0.
多普勒效应使得混频后的信号在频域上产生附加频移,影响距离测量的精度。为了补偿这一影响,可以采用快速傅里叶变换(FFT)对多个扫描帧进行联合处理,得到目标的径向速度。
6.2 速度测量的信号处理
通过在多个帧之间计算多普勒频移,可以估算目标的速度。假设在第
n
n
n 帧中得到的频移为
Δ
f
d
(
n
)
\Delta f_d(n)
Δfd(n),则目标的速度
v
v
v 可以通过频移与雷达的工作频率
f
0
f_0
f0 的关系得到:
v
=
Δ
f
d
(
n
)
⋅
c
2
f
0
.
v = \frac{\Delta f_d(n) \cdot c}{2 f_0}.
v=2f0Δfd(n)⋅c.
7. 数值示例
假设我们设计的步进调频雷达参数如下:
- 起始频率 f 0 = 10 GHz f_0 = 10 \, \text{GHz} f0=10GHz;
- 步进频率 Δ f = 1 MHz \Delta f = 1 \, \text{MHz} Δf=1MHz;
- 步数 N = 1000 N = 1000 N=1000;
- 驻留时间 T s = 100 μ s T_s = 100 \, \mu\text{s} Ts=100μs;
- 目标距离 R = 30 m R = 30 \, \text{m} R=30m。
根据这些参数,总带宽为:
B
=
N
⋅
Δ
f
=
1000
⋅
1
MHz
=
1
GHz
.
B = N \cdot \Delta f = 1000 \cdot 1 \, \text{MHz} = 1 \, \text{GHz}.
B=N⋅Δf=1000⋅1MHz=1GHz.
因此,距离分辨率为:
Δ
R
=
c
2
B
=
3
×
1
0
8
2
⋅
1
0
9
=
0.15
m
.
\Delta R = \frac{c}{2B} = \frac{3 \times 10^8}{2 \cdot 10^9} = 0.15 \, \text{m}.
ΔR=2Bc=2⋅1093×108=0.15m.
扫描时间为:
T
scan
=
N
⋅
T
s
=
1000
⋅
100
μ
s
=
0.1
s
.
T_\text{scan} = N \cdot T_s = 1000 \cdot 100 \, \mu\text{s} = 0.1 \, \text{s}.
Tscan=N⋅Ts=1000⋅100μs=0.1s.
目标的往返时间为:
τ
d
=
2
R
c
=
2
⋅
30
3
×
1
0
8
=
0.2
μ
s
.
\tau_d = \frac{2R}{c} = \frac{2 \cdot 30}{3 \times 10^8} = 0.2 \, \mu\text{s}.
τd=c2R=3×1082⋅30=0.2μs.
通过分析各步进的相位差,可以进一步计算出目标的距离。
8. 总结与展望
步进调频连续波雷达(SFMCW)通过离散的频率步进,可以在有限的带宽内实现高精度的距离测量。与线性调频雷达相比,SFMCW雷达在硬件实现和带宽利用方面具有优势。通过精确的相位差处理和频域分析,步进调频雷达能够提供优异的距离分辨率。