李雅普诺夫指数详解
引言
在现代科学中,我们常常遇到看似简单却表现出极其复杂行为的系统。这些系统可能对初始条件的微小变化表现出惊人的敏感性,长期行为呈现不规则性,这就是所谓的混沌现象。混沌理论为我们提供了理解和分析这类系统的工具,而李雅普诺夫指数则是其中最为核心的概念之一。李雅普诺夫指数(Lyapunov exponent)是描述动力系统中相邻轨道分离速率的重要指标,它定量刻画了系统对初始条件微小扰动的敏感程度。这一概念由俄罗斯数学家亚历山大·米哈伊洛维奇·李雅普诺夫(Aleksandr Mikhailovich Lyapunov)发展而来,如今已成为判断系统是否具有混沌特性的重要依据。
基本概念与定义
动力系统与轨道
动力系统是描述状态随时间演化的数学模型。一个 n n n维动力系统可以表示为:
d x d t = F ( x , t , μ ) \frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, t, \mu) dtdx=F(x,t,μ)
其中 x ∈ R n \mathbf{x} \in \mathbb{R}^n x∈Rn是系统的状态向量, F : R n × R × R m → R n \mathbf{F}: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^m \rightarrow \mathbb{R}^n F:Rn×R×Rm→Rn是描述状态如何随时间变化的向量场, μ ∈ R m \mu \in \mathbb{R}^m μ∈Rm是系统参数。当向量场 F \mathbf{F} F不显式依赖于时间 t t t时,称为自治系统:
d x d t = F ( x , μ ) \frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, \mu) dtdx=F(x,μ)
系统的轨道(或轨迹)是指状态点 x ( t ) \mathbf{x}(t) x(t)随时间变化的路径。给定初始状态 x ( t 0 ) = x 0 \mathbf{x}(t_0) = \mathbf{x}_0 x(t0)=x0,轨道可以通过求解上述微分方程获得:
x ( t ) = Φ t 0 t ( x 0 , μ ) \mathbf{x}(t) = \mathbf{\Phi}_{t_0}^t(\mathbf{x}_0, \mu) x(t)=Φt0t(x0,μ)
其中 Φ t 0 t : R n × R m → R n \mathbf{\Phi}_{t_0}^t: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n Φt0t:Rn×Rm→Rn是从时间 t 0 t_0 t0到 t t t的演化算子(或流映射)。对于离散时间系统,我们使用映射(map)来描述:
x n + 1 = F ( x n , μ ) \mathbf{x}_{n+1} = \mathbf{F}(\mathbf{x}_n, \mu) xn+1=F(xn,μ)
其中 x n \mathbf{x}_n xn表示在第 n n n个时间步的系统状态。对应的轨道可以表示为:
x n = F n ( x 0 , μ ) \mathbf{x}_n = \mathbf{F}^n(\mathbf{x}_0, \mu) xn=Fn(x0,μ)
其中 F n \mathbf{F}^n Fn表示映射 F \mathbf{F} F的 n n n次复合。
李雅普诺夫指数的严格数学定义
对于一般的动力系统,李雅普诺夫指数的严格数学定义涉及到变分方程和线性响应理论。考虑初值问题:
{ d x d t = F ( x , μ ) x ( t 0 ) = x 0 \begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, \mu) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases} {dtdx=F(x,μ)x(t0)=x0
为研究系统对初始条件的敏感性,我们考虑初始条件的微小变分 δ x 0 \delta\mathbf{x}_0 δx0。在时间 t t t时,该变分演化为 δ x ( t ) \delta\mathbf{x}(t) δx(t),满足变分方程:
d ( δ x ) d t = D F ( x ( t ) , μ ) ⋅ δ x \frac{d(\delta\mathbf{x})}{dt} = \mathbf{DF}(\mathbf{x}(t), \mu) \cdot \delta\mathbf{x} dtd(δx)=DF(x(t),μ)⋅δx
其中 D F ( x , μ ) = [ ∂ F i ∂ x j ] i , j = 1 n \mathbf{DF}(\mathbf{x}, \mu) = \left[\frac{\partial F_i}{\partial x_j}\right]_{i,j=1}^n DF(x,μ)=[∂xj∂Fi]i,j=1n是向量场 F \mathbf{F} F关于状态变量 x \mathbf{x} x的雅可比矩阵。
令 Ψ ( t , t 0 ) = ∂ Φ t 0 t ∂ x ( x 0 , μ ) \mathbf{\Psi}(t, t_0) = \frac{\partial \mathbf{\Phi}_{t_0}^t}{\partial \mathbf{x}}(\mathbf{x}_0, \mu) Ψ(t,t0)=∂x∂Φt0t(x0,μ)表示系统的状态转移矩阵,则变分的演化可以表示为:
δ x ( t ) = Ψ ( t , t 0 ) ⋅ δ x 0 \delta\mathbf{x}(t) = \mathbf{\Psi}(t, t_0) \cdot \delta\mathbf{x}_0 δx(t)=Ψ(t,t0)⋅δx0
而状态转移矩阵满足矩阵微分方程:
{ d Ψ ( t , t 0 ) d t = D F ( x ( t ) , μ ) ⋅ Ψ ( t , t 0 ) Ψ ( t 0 , t 0 ) = I \begin{cases} \frac{d\mathbf{\Psi}(t, t_0)}{dt} = \mathbf{DF}(\mathbf{x}(t), \mu) \cdot \mathbf{\Psi}(t, t_0) \\ \mathbf{\Psi}(t_0, t_0) = \mathbf{I} \end{cases} {dtdΨ(t,t0)=DF(x(t),μ)⋅Ψ(t,t0)Ψ(t0,t0)=I
其中 I \mathbf{I} I是 n × n n \times n n×n的单位矩阵。
根据Oseledets乘法遍历定理(Multiplicative Ergodic Theorem),对于遍历系统,极限
Λ = lim t → ∞ [ Ψ T ( t , t 0 ) ⋅ Ψ ( t , t 0 ) ] 1 2 t \Lambda = \lim_{t \to \infty} \left[\mathbf{\Psi}^T(t, t_0) \cdot \mathbf{\Psi}(t, t_0)\right]^{\frac{1}{2t}} Λ=t→∞lim[ΨT(t,t0)⋅Ψ(t,t0)]2t1
存在且几乎处处相同(除了一个测度为零的集合)。矩阵 Λ \Lambda Λ的特征值是 e λ i e^{\lambda_i} eλi( i = 1 , 2 , … , n i = 1, 2, \ldots, n i=1,2,…,n),其中 λ i \lambda_i λi就是李雅普诺夫指数。更准确地说,考虑矩阵 Ψ T ( t , t 0 ) ⋅ Ψ ( t , t 0 ) \mathbf{\Psi}^T(t, t_0) \cdot \mathbf{\Psi}(t, t_0) ΨT(t,t0)⋅Ψ(t,t0)的奇异值分解:
Ψ T ( t , t 0 ) ⋅ Ψ ( t , t 0 ) = V ( t ) ⋅ D 2 ( t ) ⋅ V T ( t ) \mathbf{\Psi}^T(t, t_0) \cdot \mathbf{\Psi}(t, t_0) = \mathbf{V}(t) \cdot \mathbf{D}^2(t) \cdot \mathbf{V}^T(t) ΨT(t,t0)⋅Ψ(t,t0)=V(t)⋅D2(t)⋅VT(t)
其中 D ( t ) = diag ( σ 1 ( t ) , σ 2 ( t ) , … , σ n ( t ) ) \mathbf{D}(t) = \text{diag}(\sigma_1(t), \sigma_2(t), \ldots, \sigma_n(t)) D(t)=diag(σ1(t),σ2(t),…,σn(t))是奇异值矩阵,而 V ( t ) \mathbf{V}(t) V(t)是正交矩阵。
李雅普诺夫指数定义为:
λ i = lim t → ∞ 1 t ln σ i ( t ) , i = 1 , 2 , … , n \lambda_i = \lim_{t \to \infty} \frac{1}{t} \ln \sigma_i(t), \quad i = 1, 2, \ldots, n λi=t→∞limt1lnσi(t),i=1,2,…,n
通常按照大小顺序排列: λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n λ1≥λ2≥⋯≥λn。
李雅普诺夫谱的测度论基础
在更广泛的数学框架下,李雅普诺夫指数可以通过测度论和遍历理论来严格定义。考虑动力系统 ( M , Φ t , μ ) (\mathcal{M}, \Phi_t, \mu) (M,Φt,μ),其中 M \mathcal{M} M是相空间, Φ t \Phi_t Φt是流, μ \mu μ是 Φ t \Phi_t Φt不变的概率测度。对于几乎所有的初始点 x ∈ M \mathbf{x} \in \mathcal{M} x∈M,根据Oseledets定理,存在 r ≤ n r \leq n r≤n个不同的李雅普诺夫指数 λ 1 > λ 2 > ⋯ > λ r \lambda_1 > \lambda_2 > \cdots > \lambda_r λ1>λ2>⋯>λr,以及对应的线性子空间的分解:
T x M = E 1 ( x ) ⊕ E 2 ( x ) ⊕ ⋯ ⊕ E r ( x ) T_{\mathbf{x}}\mathcal{M} = E_1(\mathbf{x}) \oplus E_2(\mathbf{x}) \oplus \cdots \oplus E_r(\mathbf{x}) TxM=E1(x)⊕E2(x)⊕⋯⊕Er(x)
其中 T x M T_{\mathbf{x}}\mathcal{M} TxM是 x \mathbf{x} x点处的切空间, E i ( x ) E_i(\mathbf{x}) Ei(x)是与李雅普诺夫指数 λ i \lambda_i λi相关的子空间。对于任意非零向量 v ∈ E i ( x ) \mathbf{v} \in E_i(\mathbf{x}) v∈Ei(x),有:
λ i = lim t → ∞ 1 t ln ∥ D Φ t ( x ) ⋅ v ∥ ∥ v ∥ \lambda_i = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|D\Phi_t(\mathbf{x}) \cdot \mathbf{v}\|}{\|\mathbf{v}\|} λi=t→∞limt1ln∥v∥∥DΦt(x)⋅v∥
其中 D Φ t ( x ) D\Phi_t(\mathbf{x}) DΦt(x)是流 Φ t \Phi_t Φt在 x \mathbf{x} x处的微分。对于离散系统 ( M , f , μ ) (\mathcal{M}, f, \mu) (M,f,μ),类似地有:
λ i = lim n → ∞ 1 n ln ∥ D f n ( x ) ⋅ v ∥ ∥ v ∥ , v ∈ E i ( x ) \lambda_i = \lim_{n \to \infty} \frac{1}{n} \ln \frac{\|Df^n(\mathbf{x}) \cdot \mathbf{v}\|}{\|\mathbf{v}\|}, \quad \mathbf{v} \in E_i(\mathbf{x}) λi=n→∞limn1ln∥v∥∥Dfn(x)⋅v∥,v∈Ei(x)
其中 D f n ( x ) Df^n(\mathbf{x}) Dfn(x)是映射 f n f^n fn在 x \mathbf{x} x处的雅可比矩阵。
数学推导的进一步深化
一维映射的李雅普诺夫指数严格推导
为了更深入地理解李雅普诺夫指数,我们考虑一维离散映射:
x n + 1 = f ( x n , μ ) x_{n+1} = f(x_n, \mu) xn+1=f(xn,μ)
假设有两个初始点 x 0 x_0 x0和 x 0 + δ 0 x_0 + \delta_0 x0+δ0,其中 δ 0 \delta_0 δ0是很小的正数。经过一次迭代后,这两个点分别变为:
x
1
=
f
(
x
0
,
μ
)
x_1 = f(x_0, \mu)
x1=f(x0,μ)
x
1
+
δ
1
=
f
(
x
0
+
δ
0
,
μ
)
x_1 + \delta_1 = f(x_0 + \delta_0, \mu)
x1+δ1=f(x0+δ0,μ)
对于足够小的 δ 0 \delta_0 δ0,我们可以使用泰勒展开至高阶项:
f ( x 0 + δ 0 , μ ) = f ( x 0 , μ ) + f ′ ( x 0 , μ ) δ 0 + 1 2 f ′ ′ ( x 0 , μ ) δ 0 2 + O ( δ 0 3 ) f(x_0 + \delta_0, \mu) = f(x_0, \mu) + f'(x_0, \mu)\delta_0 + \frac{1}{2}f''(x_0, \mu)\delta_0^2 + \mathcal{O}(\delta_0^3) f(x0+δ0,μ)=f(x0,μ)+f′(x0,μ)δ0+21f′′(x0,μ)δ02+O(δ03)
因此,
δ 1 = f ′ ( x 0 , μ ) δ 0 + 1 2 f ′ ′ ( x 0 , μ ) δ 0 2 + O ( δ 0 3 ) \delta_1 = f'(x_0, \mu)\delta_0 + \frac{1}{2}f''(x_0, \mu)\delta_0^2 + \mathcal{O}(\delta_0^3) δ1=f′(x0,μ)δ0+21f′′(x0,μ)δ02+O(δ03)
对于无穷小的初始扰动,我们只保留线性项:
δ 1 ≈ f ′ ( x 0 , μ ) δ 0 \delta_1 \approx f'(x_0, \mu)\delta_0 δ1≈f′(x0,μ)δ0
经过第二次迭代:
δ 2 ≈ f ′ ( x 1 , μ ) δ 1 ≈ f ′ ( x 1 , μ ) f ′ ( x 0 , μ ) δ 0 \delta_2 \approx f'(x_1, \mu)\delta_1 \approx f'(x_1, \mu)f'(x_0, \mu)\delta_0 δ2≈f′(x1,μ)δ1≈f′(x1,μ)f′(x0,μ)δ0
经过 n n n次迭代后:
δ n ≈ ( ∏ i = 0 n − 1 f ′ ( x i , μ ) ) δ 0 \delta_n \approx \left(\prod_{i=0}^{n-1}f'(x_i, \mu)\right)\delta_0 δn≈(i=0∏n−1f′(xi,μ))δ0
这表明扰动的增长遵循乘积法则。为了分析长期行为,我们取自然对数:
ln ∣ δ n ∣ ≈ ln ∣ δ 0 ∣ + ∑ i = 0 n − 1 ln ∣ f ′ ( x i , μ ) ∣ \ln|\delta_n| \approx \ln|\delta_0| + \sum_{i=0}^{n-1}\ln|f'(x_i, \mu)| ln∣δn∣≈ln∣δ0∣+i=0∑n−1ln∣f′(xi,μ)∣
因此,李雅普诺夫指数可以表示为:
λ = lim n → ∞ 1 n ∑ i = 0 n − 1 ln ∣ f ′ ( x i , μ ) ∣ \lambda = \lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\ln|f'(x_i, \mu)| λ=n→∞limn1i=0∑n−1ln∣f′(xi,μ)∣
根据遍历理论,对于遍历系统,这个时间平均等于相空间上的集合平均:
λ = ∫ X ln ∣ f ′ ( x , μ ) ∣ d μ ( x ) \lambda = \int_X \ln|f'(x, \mu)| d\mu(x) λ=∫Xln∣f′(x,μ)∣dμ(x)
其中 μ \mu μ是系统的不变测度。
高维系统的李雅普诺夫指数谱的几何与代数解释
在高维系统中,李雅普诺夫指数谱具有丰富的几何和代数意义。考虑 n n n维系统中的体积元素 V ( 0 ) V(0) V(0),其体积变化可以表示为:
V ( t ) = V ( 0 ) exp ( ∫ 0 t ∇ ⋅ F ( x ( s ) , μ ) d s ) V(t) = V(0) \exp\left(\int_0^t \nabla \cdot \mathbf{F}(\mathbf{x}(s), \mu) ds\right) V(t)=V(0)exp(∫0t∇⋅F(x(s),μ)ds)
其中 ∇ ⋅ F \nabla \cdot \mathbf{F} ∇⋅F是向量场 F \mathbf{F} F的散度。
从代数角度看,体积变化率与雅可比矩阵的行列式相关:
d V ( t ) d t = tr ( D F ( x ( t ) , μ ) ) ⋅ V ( t ) \frac{d V(t)}{dt} = \text{tr}(\mathbf{DF}(\mathbf{x}(t), \mu)) \cdot V(t) dtdV(t)=tr(DF(x(t),μ))⋅V(t)
其中 tr \text{tr} tr表示矩阵的迹。
李雅普诺夫指数的和等于这个体积变化率的时间平均:
∑ i = 1 n λ i = lim t → ∞ 1 t ∫ 0 t tr ( D F ( x ( s ) , μ ) ) d s \sum_{i=1}^{n} \lambda_i = \lim_{t \to \infty} \frac{1}{t} \int_0^t \text{tr}(\mathbf{DF}(\mathbf{x}(s), \mu)) ds i=1∑nλi=t→∞limt1∫0ttr(DF(x(s),μ))ds
对于哈密顿系统,由于相空间体积守恒(Liouville定理),有:
∑ i = 1 n λ i = 0 \sum_{i=1}^{n} \lambda_i = 0 i=1∑nλi=0
对于耗散系统,体积收缩,所以:
∑ i = 1 n λ i < 0 \sum_{i=1}^{n} \lambda_i < 0 i=1∑nλi<0
更一般地,考虑 k k k维子空间中的体积元素,其变化率与李雅普诺夫指数前 k k k项的和相关:
∑ i = 1 k λ i = lim t → ∞ 1 t ln Vol k ( t ) Vol k ( 0 ) \sum_{i=1}^{k} \lambda_i = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\text{Vol}_k(t)}{\text{Vol}_k(0)} i=1∑kλi=t→∞limt1lnVolk(0)Volk(t)
其中 Vol k ( t ) \text{Vol}_k(t) Volk(t)是 k k k维体积元素在时间 t t t时的体积。
协变李雅普诺夫向量与可积性
协变李雅普诺夫向量(Covariant Lyapunov Vectors, CLVs)是与李雅普诺夫指数相关的一组特殊向量,它们在系统演化过程中保持协变性,即:
D Φ t ( x ) ⋅ v i ( x ) = κ i ( t , x ) ⋅ v i ( Φ t ( x ) ) D\Phi_t(\mathbf{x}) \cdot \mathbf{v}_i(\mathbf{x}) = \kappa_i(t, \mathbf{x}) \cdot \mathbf{v}_i(\Phi_t(\mathbf{x})) DΦt(x)⋅vi(x)=κi(t,x)⋅vi(Φt(x))
其中 v i ( x ) \mathbf{v}_i(\mathbf{x}) vi(x)是第 i i i个协变李雅普诺夫向量, κ i ( t , x ) \kappa_i(t, \mathbf{x}) κi(t,x)是相应的放大系数。
李雅普诺夫指数与这些放大系数的关系为:
λ i = lim t → ∞ 1 t ln ∣ κ i ( t , x ) ∣ \lambda_i = \lim_{t \to \infty} \frac{1}{t} \ln |\kappa_i(t, \mathbf{x})| λi=t→∞limt1ln∣κi(t,x)∣
协变李雅普诺夫向量构成了相空间中的局部坐标系,它们的分布反映了系统的内在结构和动力学行为。特别地,与正李雅普诺夫指数相关的CLVs构成了系统的不稳定子空间,与负李雅普诺夫指数相关的CLVs构成了系统的稳定子空间。此外,李雅普诺夫指数对系统的可积性有重要意义。根据KAM(Kolmogorov-Arnold-Moser)理论,可积系统的李雅普诺夫指数全部为零。当系统受到微小扰动时,部分不变环面会被破坏,出现混沌区域,此时会有正的李雅普诺夫指数出现。
李雅普诺夫指数的计算方法
实际计算李雅普诺夫指数时,我们通常无法获得系统的解析解,需要采用数值方法。以下详细介绍几种主要计算方法及其数学基础:
定义法与改进的Wolf方法
定义法直接基于李雅普诺夫指数的定义进行计算。针对不同维度,具体实施需要考虑以下因素:
对于一维映射:
λ = lim n → ∞ 1 n ∑ i = 0 n − 1 ln ∣ f ′ ( x i , μ ) ∣ \lambda = \lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\ln|f'(x_i, \mu)| λ=n→∞limn1i=0∑n−1ln∣f′(xi,μ)∣
我们可以通过数值计算轨道 { x i } i = 0 n − 1 \{x_i\}_{i=0}^{n-1} {xi}i=0n−1并累加 ln ∣ f ′ ( x i , μ ) ∣ \ln|f'(x_i, \mu)| ln∣f′(xi,μ)∣来近似。对于高维系统,Wolf等人提出了改进的方法,通过以下步骤实现:
- 初始化参考轨道 x ( 0 ) \mathbf{x}(0) x(0)和附近的扰动轨道 x ( 0 ) + δ x ( 0 ) \mathbf{x}(0) + \delta\mathbf{x}(0) x(0)+δx(0),使得 ∥ δ x ( 0 ) ∥ = δ 0 \|\delta\mathbf{x}(0)\| = \delta_0 ∥δx(0)∥=δ0很小
- 同时演化两条轨道一段时间 Δ t \Delta t Δt,得到 x ( Δ t ) \mathbf{x}(\Delta t) x(Δt)和 x ( Δ t ) + δ x ( Δ t ) \mathbf{x}(\Delta t) + \delta\mathbf{x}(\Delta t) x(Δt)+δx(Δt)
- 计算放大因子 a 1 = ∥ δ x ( Δ t ) ∥ ∥ δ x ( 0 ) ∥ a_1 = \frac{\|\delta\mathbf{x}(\Delta t)\|}{\|\delta\mathbf{x}(0)\|} a1=∥δx(0)∥∥δx(Δt)∥
- 将扰动轨道重新缩放,使其与参考轨道的距离回到
δ
0
\delta_0
δ0:
x ( Δ t ) + δ x ′ ( Δ t ) = x ( Δ t ) + δ 0 ∥ δ x ( Δ t ) ∥ δ x ( Δ t ) \mathbf{x}(\Delta t) + \delta\mathbf{x}'(\Delta t) = \mathbf{x}(\Delta t) + \frac{\delta_0}{\|\delta\mathbf{x}(\Delta t)\|}\delta\mathbf{x}(\Delta t) x(Δt)+δx′(Δt)=x(Δt)+∥δx(Δt)∥δ0δx(Δt) - 重复步骤2-4,得到一系列放大因子 { a i } i = 1 M \{a_i\}_{i=1}^M {ai}i=1M
- 计算最大李雅普诺夫指数:
λ 1 = 1 M Δ t ∑ i = 1 M ln a i \lambda_1 = \frac{1}{M\Delta t}\sum_{i=1}^{M}\ln a_i λ1=MΔt1i=1∑Mlnai
这种方法只能计算最大李雅普诺夫指数。为了获得完整的李雅普诺夫指数谱,需要更复杂的方法。
正交化方法的数学基础
正交化方法是计算完整李雅普诺夫指数谱的标准方法,其核心是使用格拉姆-施密特(Gram-Schmidt)正交化过程来保持扰动向量组的线性独立性。
该方法的理论基础来自于以下定理:对于线性系统
d Y d t = A ( t ) Y \frac{d\mathbf{Y}}{dt} = \mathbf{A}(t)\mathbf{Y} dtdY=A(t)Y
其基本解矩阵 Y ( t ) \mathbf{Y}(t) Y(t)的奇异值渐近行为决定了李雅普诺夫指数。
具体算法步骤如下:
- 初始化 n n n个线性独立的单位正交扰动向量 { v 1 ( 0 ) , v 2 ( 0 ) , … , v n ( 0 ) } \{\mathbf{v}_1(0), \mathbf{v}_2(0), \ldots, \mathbf{v}_n(0)\} {v1(0),v2(0),…,vn(0)},通常选择标准正交基
- 在时间 t j t_j tj,我们有参考轨道 x ( t j ) \mathbf{x}(t_j) x(tj)和正交向量组 { v 1 ( t j ) , v 2 ( t j ) , … , v n ( t j ) } \{\mathbf{v}_1(t_j), \mathbf{v}_2(t_j), \ldots, \mathbf{v}_n(t_j)\} {v1(tj),v2(tj),…,vn(tj)}
- 演化系统和变分方程到时间 t j + 1 = t j + Δ t t_{j+1} = t_j + \Delta t tj+1=tj+Δt,得到 x ( t j + 1 ) \mathbf{x}(t_{j+1}) x(tj+1)和一组非正交向量 { w 1 , w 2 , … , w n } \{\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n\} {w1,w2,…,wn},其中 w i \mathbf{w}_i wi是 v i ( t j ) \mathbf{v}_i(t_j) vi(tj)的演化结果
- 对向量组 { w 1 , w 2 , … , w n } \{\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n\} {w1,w2,…,wn}应用格拉姆-施密特正交化:
v 1 ( t j + 1 ) = w 1 ∥ w 1 ∥ u 2 = w 2 − ( w 2 ⋅ v 1 ( t j + 1 ) ) v 1 ( t j + 1 ) v 2 ( t j + 1 ) = u 2 ∥ u 2 ∥ ⋮ u i = w i − ∑ k = 1 i − 1 ( w i ⋅ v k ( t j + 1 ) ) v k ( t j + 1 ) v i ( t j + 1 ) = u i ∥ u i ∥ ⋮ \begin{aligned} \mathbf{v}_1(t_{j+1}) &= \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} \\ \mathbf{u}_2 &= \mathbf{w}_2 - (\mathbf{w}_2 \cdot \mathbf{v}_1(t_{j+1}))\mathbf{v}_1(t_{j+1}) \\ \mathbf{v}_2(t_{j+1}) &= \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ &\vdots \\ \mathbf{u}_i &= \mathbf{w}_i - \sum_{k=1}^{i-1}(\mathbf{w}_i \cdot \mathbf{v}_k(t_{j+1}))\mathbf{v}_k(t_{j+1}) \\ \mathbf{v}_i(t_{j+1}) &= \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|} \\ &\vdots \end{aligned} v1(tj+1)u2v2(tj+1)uivi(tj+1)=∥w1∥w1=w2−(w2⋅v1(tj+1))v1(tj+1)=∥u2∥u2⋮=wi−k=1∑i−1(wi⋅vk(tj+1))vk(tj+1)=∥ui∥ui⋮
- 记录每一步的归一化系数 N i ( j ) = ∥ u i ∥ N_i^{(j)} = \|\mathbf{u}_i\| Ni(j)=∥ui∥
- 重复步骤3-5直到 j j j足够大
- 计算李雅普诺夫指数:
λ i = lim m → ∞ 1 m Δ t ∑ j = 1 m ln N i ( j ) \lambda_i = \lim_{m\to\infty}\frac{1}{m\Delta t}\sum_{j=1}^{m}\ln N_i^{(j)} λi=m→∞limmΔt1j=1∑mlnNi(j)
从数学上看,这一过程等价于对状态转移矩阵 Ψ ( t j + 1 , t j ) \mathbf{\Psi}(t_{j+1}, t_j) Ψ(tj+1,tj)进行QR分解:
Ψ ( t j + 1 , t j ) = Q j + 1 R j + 1 \mathbf{\Psi}(t_{j+1}, t_j) = \mathbf{Q}_{j+1}\mathbf{R}_{j+1} Ψ(tj+1,tj)=Qj+1Rj+1
其中 Q j + 1 \mathbf{Q}_{j+1} Qj+1是正交矩阵, R j + 1 \mathbf{R}_{j+1} Rj+1是上三角矩阵。李雅普诺夫指数由 R j + 1 \mathbf{R}_{j+1} Rj+1的对角元素决定:
λ i = lim m → ∞ 1 m Δ t ∑ j = 1 m ln ∣ R j + 1 , i i ∣ \lambda_i = \lim_{m\to\infty}\frac{1}{m\Delta t}\sum_{j=1}^{m}\ln|R_{j+1,ii}| λi=m→∞limmΔt1j=1∑mln∣Rj+1,ii∣
联合QR方法与非线性系统的近似
在实际计算中,我们通常不显式计算变分方程,而是使用有限差分近似:
δ x ( t + Δ t ) ≈ x ( t + Δ t , x 0 + δ x 0 ) − x ( t + Δ t , x 0 ) \delta\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t + \Delta t, \mathbf{x}_0 + \delta\mathbf{x}_0) - \mathbf{x}(t + \Delta t, \mathbf{x}_0) δx(t+Δt)≈x(t+Δt,x0+δx0)−x(t+Δt,x0)
这种方法更加稳定,但需要额外的计算资源。而对于非线性系统,我们可以使用联合QR方法(Joint QR Method)计算李雅普诺夫指数谱。该方法的关键思想是将线性化系统与非线性系统联合计算,并使用QR分解来稳定计算过程。
具体来说,考虑扩展系统:
[ x ˙ Y ˙ ] = [ F ( x , μ ) D F ( x , μ ) Y ] \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}(\mathbf{x}, \mu) \\ \mathbf{DF}(\mathbf{x}, \mu)\mathbf{Y} \end{bmatrix} [x˙Y˙]=[F(x,μ)DF(x,μ)Y]
其中 Y \mathbf{Y} Y是基本解矩阵。在每个时间步 t j t_j tj,我们对 Y \mathbf{Y} Y进行QR分解:
Y ( t j ) = Q j R j \mathbf{Y}(t_j) = \mathbf{Q}_j\mathbf{R}_j Y(tj)=QjRj
并重置 Y ( t j ) = Q j \mathbf{Y}(t_j) = \mathbf{Q}_j Y(tj)=Qj。这样,李雅普诺夫指数可以从 R j \mathbf{R}_j Rj的对角元素计算:
λ i = lim m → ∞ 1 t m − t 0 ∑ j = 1 m ln ∣ R j , i i ∣ \lambda_i = \lim_{m\to\infty}\frac{1}{t_m - t_0}\sum_{j=1}^{m}\ln|R_{j,ii}| λi=m→∞limtm−t01j=1∑mln∣Rj,ii∣
这种方法稳定性好,能够准确计算非线性系统的完整李雅普诺夫指数谱。
改进的算法:标准化与再正交化
在高维系统和长时间计算中,正交化方法可能会遇到数值稳定性问题。为了解决这些问题,提出了各种改进算法,包括:
- 标准化与再正交化(Normalization and Reorthogonalization):定期进行完全重新正交化以减少舍入误差的累积
- 块QR算法(Block QR Algorithm):将向量分组并使用块QR分解来提高计算效率和稳定性
- 变步长方法(Variable Step-size Method):根据系统的局部动力学自适应调整时间步长
- 隐式Runge-Kutta方法(Implicit Runge-Kutta Method):针对刚性系统使用隐式积分器
具体实现时,需要根据系统特性选择合适的算法和参数。对于非常高维的系统,可以只计算前几个最大的李雅普诺夫指数,而不是完整的谱。
李雅普诺夫指数的物理意义与理论发展
混沌的数学刻画与稳定性分析
李雅普诺夫指数提供了混沌系统的严格数学刻画。具体来说,如果动力系统满足以下条件,则称其为混沌系统:
- 至少有一个正的李雅普诺夫指数,表明系统对初始条件的敏感依赖性
- 系统是有界的,即轨道不会逃逸到无穷远处
- 轨道在相空间中是稠密的,表现出遍历性
从稳定性角度看,李雅普诺夫指数可以用来分析以下几种情况:
- 如果所有李雅普诺夫指数都为负,系统是完全吸引的(Attracting)
- 如果最大李雅普诺夫指数为零,而其余为负,系统是边缘稳定的(Marginally Stable)
- 如果有些李雅普诺夫指数为正,有些为负,系统表现出鞍点型的行为(Saddle-type Behavior)
对于哈密顿系统,李雅普诺夫指数谱通常以共轭对出现: ( λ 1 , − λ 1 , λ 2 , − λ 2 , … ) (\lambda_1, -\lambda_1, \lambda_2, -\lambda_2, \ldots) (λ1,−λ1,λ2,−λ2,…)。这反映了哈密顿系统的相空间体积守恒性质。
信息论视角与预测极限
从信息论角度,李雅普诺夫指数与系统产生信息熵的速率有关。对于混沌系统,正的李雅普诺夫指数意味着系统不断产生新的信息,使得长期预测成为不可能。
具体来说,Pesin公式建立了最大李雅普诺夫指数与Kolmogorov-Sinai熵(KS熵)之间的关系:
h K S = ∑ λ i > 0 λ i h_{KS} = \sum_{\lambda_i > 0} \lambda_i hKS=λi>0∑λi
这表明KS熵等于所有正李雅普诺夫指数的和。KS熵衡量了系统产生新信息的速率,也即系统不可预测性的程度。
考虑一个初始不确定度为 Δ x ( 0 ) \Delta x(0) Δx(0)的系统,在时间 t t t后,不确定度增长为:
Δ x ( t ) ≈ Δ x ( 0 ) e λ 1 t \Delta x(t) \approx \Delta x(0) e^{\lambda_1 t} Δx(t)≈Δx(0)eλ1t
如果要保持预测误差在可接受范围 ε \varepsilon ε内,则预测极限时间为:
t max ≈ 1 λ 1 ln ε Δ x ( 0 ) t_{\max} \approx \frac{1}{\lambda_1} \ln \frac{\varepsilon}{\Delta x(0)} tmax≈λ11lnΔx(0)ε
这就是所谓的预测极限(Predictability Horizon),它与最大李雅普诺夫指数成反比。
分岔理论与控制理论的联系
李雅普诺夫指数在分岔理论中扮演重要角色,可以用来检测系统参数变化导致的动力学行为突变。特别地,在Hopf分岔点,一对共轭的李雅普诺夫指数从负值穿越虚轴,变为纯虚数,此时系统从稳定平衡点转变为稳定极限环。在倍周期分岔点,一个李雅普诺夫指数变为零,随后变为正值,此时系统的周期解失稳,产生周期翻倍。在控制理论中,李雅普诺夫指数可以用来设计稳定化混沌系统的控制策略。通过合适的反馈控制,可以将正的李雅普诺夫指数降为零或负值,从而将混沌系统稳定在所需的轨道上。
李雅普诺夫指数的数学泛化
李雅普诺夫指数的概念可以泛化到更广泛的数学对象。例如,对于随机动力系统,可以定义随机李雅普诺夫指数(Random Lyapunov Exponent):
λ i ( ω ) = lim t → ∞ 1 t ln σ i ( t , ω ) \lambda_i(\omega) = \lim_{t \to \infty} \frac{1}{t} \ln \sigma_i(t, \omega) λi(ω)=t→∞limt1lnσi(t,ω)
其中 ω \omega ω表示特定的噪声实现。
对于无穷维系统(如偏微分方程描述的系统),可以定义无穷维李雅普诺夫谱:
{ λ i } i = 1 ∞ \{\lambda_i\}_{i=1}^{\infty} {λi}i=1∞
这种泛化使李雅普诺夫理论能够应用于更广泛的系统,如湍流、非线性波动和量子混沌。