论文阅读 :A survey of visual analytics techniques for machine learning

题目:A survey of visual analytics techniques for machine learning

概述

本文发布于Computational Visual Media 2020

原文链接:https://doi.org/10.1007/s41095-020-0191-7

本文是清华大学刘世霞老师团队的一篇综述性质的文章,内容主要涵盖了visual analytics for machine learning领域的知识。他系统的回顾了过去十年发表的259篇论文以及2010年以前的代表性著作。通过建立了一个分类法并列出对应的具有影响力的作品来突出研究挑战与未来研究机会

本论文专注于数据分析技术,以帮助开发可解释的,值得信赖的,可靠的机器学习程序。选择的论文来自InfoVis, VAST, Vis,EuroVis, Pacific Vis, IEEE TVGC, CGF和CG&A

Introduction

各种视觉分析方法被提出来帮助机器学习更容易解释,使得机器学习模型更加值得信赖和可靠。这些研究工作充分结合了交互式可视化和机器学习的优势来提升分析和分析和理解学习过程中的主要组件来提升性能。例如用于解释深度卷积神经网络内部的视觉分析研究提高了深度学习模型的透明度[1-4]
机器学习的可视化分析技术的快速发展产生了全面回顾的需求,来帮助理解可视化技术是如何设计和应用于机器学习管道的,在不同的角度总结了这个领域的进展。现有的调查要么集中在机器学习的特定领域,如文本挖掘[5],预测模型[6]和模型理解[1],要么基于一组示例技术来概述一个本体[7]
这篇文章侧重机器学习的每个阶段的可视化技术,并关注可视化解释对可视化特征检测研究的贡献。本文系统的收集了259篇论文,并给予机器学习的研究过程,划分了三个相关阶段:before,during and after model building.在三个节点分析了可视化技术的功能,抽象了典型任务并使用样例说明。同时强调了视觉分析领域六个突出的研究方向和有待解决的问题


Taxonomy

本文将所有作品根据一个典型的机器学习pipeline[8]来分类,管道包括三个阶段(1)模型建立前的数据预处理(2)机器学习模型建立(3)模型建立后的部署。因此本文将机器学习的视觉分析技术映射到三个阶段:建模前的技术,建模中的技术和建模后的技术

Techniques before model building

在模型构建之前使用可视化分析技术的主要目的是帮助模型开发人员更好的为模型的构建准备数据。数据的质量主要取决于数据本身和所使用的特性。因此有两个研究方向:数据质量改进的可视化分析和特征工程。

data quality

有很多方式来提高数据质量,例如补全缺失的数据属性和纠正错误的数据标签。以前这些任务主要通过手动或者自动方法进行,比如learning-from-crowds算法,可以从嘈杂的人群标签中估计ground-truth标签[9]。为了减少专家的工作量并进一步提高自动方法的结果,一些工作使用可视化分析技术交互性的提高数据质量,近年来这一课题得到越来越多的关注

feature engineering

特征工程用于选择最优特征训练模型。在视觉分析中,交互式特征选择提供了一个交互式和迭代的特征选择过程。近年来,特征的选择和构建大多是通过神经网络进行的,相对应的,这一方向的研究关注在减少

Techniques during model building

模型构建是构建成功的机器学习应用程序的中心阶段。开发可视化分析方法来促进模型构建也是可视化领域一个日益发展的研究方向。本片论文将不同的方法按照分析目标进行分类,分为模型理解,模型诊断和模型转向(model understanding, model diagnosis, model steering)。模型理解方法旨在直观的解释模型的工作机制,例如参数的变化是如何影响模型,以及为什么模型为特定的输入提供特定的输出。模型诊断方法是通过对模型蓄念过程的交互探索来诊断模型训练中的错误。模型转向方法主要是通过交互式的方式来提高模型的性能

Techniques after model building

机器学习模型构建和部署完成后,帮助用户以直观的方式理解模型的输出,提高模型输出的信任度是至关重要的。与模型构建中的模型理解方法不同,这些探索模型输出的方法通常针对模型用户而非模型开发人员。这些方法的重点通常在于模型输出的直观表示和探索上。本文根据所分析的数据类型对这些方法进行分类,分为静态数据与动态数据。

Techniques before model building

在建立模型之前,两个主要的任务是数据处理和特征工程。低质量的数据和特征会降低机器学习模型的性能。数据质量问题包括缺失值,异常值和实例及其标签中的噪声。特征质量问题包括不相关的特性、特性之间的冗余等。虽然手动解决这些方法非常的耗时,但是自动方法的性能可能比较差。各种可视化分析技术被开发出来以减少专家的努力,同时提高产生高质量数据和特征的自动方法的性能[10]

Improving data quality

数据包含实例及其标签,从这个角度来看,改进数据质量的现有工作要么涉及实例级改进,要么涉及标签级改进

instance-level improvement

在实例级,许多可视化方法专注于检测和纠正数据中的异常,如缺失值和重复。[11]提出了profiler来帮助发现和评估表格数据中的异常。采用异常检测方法对数据异常进行检测,并将数据异常划分为不同类型。然后自动推荐链接摘要可视化以方便发现这些异常的潜在原因和后果。[12]开发了VIVID来处理纵向队列研究中数据的缺失值。通过多重协同可视化,帮助专家识别缺失值的根本原因并使用适当的模型替换缺失数据。DQProver Explorer[13]支持数据来源的分析,使用一个来源图来支持数据状态的导航和质量流来表述数据质量随时间的变化,说明异常去除这个迭代过程中的来源可以让用户意识到数据质量的变化,并对处理后的数据建立信任。对于非样本分布(OoD,没有被训练数据很好的覆盖的测试样本,是模型性能下降的一个主要来源)这种数据异常,[14]提出了OoDAnalyzer来检测和分析OoD样品。它提出了一种将高、低级特征相结合的面向对象的集成检测方法。检测结果的网格可视化(如下图)被用来探索上下文中的OoD样本,并解释他们存在的潜在原因。为了在勘探过程中以交互速率生成网格布局,基于霍尔定理开发了一种基于KNN的网格布局算法

在这里插入图片描述

当考虑时间序列数据的时候,由于时间具有明显的特征,导致需要在时间上下文中进行分析的特定质量问题,因此出现了一些挑战。为了解决这个问题,[15]提出了一个可视化分析系统Visplause来可视化地评估时间序列数据质量。系统会用表格的像是展示像异常频率及其时间分布这样的异常检测结果,为了解决可伸缩性问题,基于元信息将数据聚合到一个层次结构中,从而可以同时分析一组异常(比如同一个类型的异常时间序列)。除了自动监测异常之外,[16]提出的KYE还支持识别被自动方法忽略的额外异常。这种方法的时间序列数据以热图视图的形式呈现,其中异常模式(比如具有异常高值的区域)表明潜在的异常。为了更好的分析和细化点击流数据(点击流数据是视觉分析领域中被广泛研究的一种时间序列数据),segmentfier[17]提出为分割和分析提供一个迭代的探索过程。用户可以在三个不同粒度的协调视图中探索片段,并通过过滤、分区和转换来细分他们。每一步细化都会产生新的细分,这些细分可以被进一步分析和细化

为了解决数据质量改进中的不确定性,[18]开发了一种可视化分析工具来展示不同预处理方法引起的数据变化和不确定性。该工具使专家能够意识到方法的效果,并选择合适的方法,减少与任务无关的部分同时保留数据中与任务相关的部分

由于数据有暴露敏感信息的风险,近期有研究集中于在数据质量改进过程中保护数据隐私。对于表格数据,[19]开发了隐私暴露风险树(Privacy Exposure Risk Tree)来显示数据中的隐私,并开发了效用保持度矩阵来展示效用如何随着隐私保护操作的应用而变化。[20]提出了一个可视化分析系统GraphProtector来保护网络数据集中的隐私。为了保护网络的重要结构,首先根据节点的重要性指定节点优先级。重要节点被分配低优先级,减少了修改这些节点的可能性,并可以根据自己的知识和经验选择最合适的操作

label-level improvement

根据数据是否有噪声标签,现有的作品可以分为提高噪声标签质量的方法或者允许交互式标签的方法

Crowdsourcing为收集标签提供了一种经济高效的方式。然而,众多的工作者提供的标签通常充满噪声。针对去除标签中的噪声,[21]开发了一种众包聚类方法,以去除众包工作者们提供的冗余解释。解释首先被分组,然后最有代表性的被保留。[22]提出了C2A,将众包注释和工作者们的行为可视化,来帮助医生在临床视频中识别恶性肿瘤。该种技术可以帮助医生丢弃大多数无肿瘤的视频片段,专注于最有可能有肿瘤的视频片段。[23]开发了CMed,通过众包可视化临床图像注释以及工作者们的行为。通过根据注释精度对工作者进行聚类,并分析他们记录的事件来帮助专家找到优秀的工作者,并观察工作者行为模式产生的影响。[24]开发了三个协调可视化,一个混淆(a),一个实例(b)和一个工作者可视化 (c)以便于识别和验证不确定的实例标签和不可靠的工作者,通过这种方式他能改进众包标签。在专家验证的基础上,推荐更多的实例和工作者通过迭代和渐进的验证程序进行验证

在这里插入图片描述

在很多真实世界的数据集中,众包信息是不可用的。例如ImageNet数据集仅包含了通过自动去噪方法清除的标签。为了处理这类数据集,[25]开发了DataDebugger,通过利用用户选择的可信项目来交互式地提高数据质量。结合了分层可视化与增量投影方法和离群点有偏采样方法相结合,促进了可信项目的探索和识别。基于这些可信项目,数据矫正算法将标签从可信项目传播到整个数据集。[26]假设被训练分类器错误分类的实例可能是被贴错标签的实例。基于这一假设,他们使用了一个由多维增强投影的邻居连接树来帮助用户探索错误分类的实例并纠正错误标记的实例。矫正后,使用矫正后的标签细化分类器并开始新一轮的矫正。[27]开发了三种分类器引导的措施来检测数据错误,然后用矩阵和散点图的形式展示数据误差,帮助专家能够推理并理解误差

上述方法都是从带噪声的标记数据开始,但是很多数据集不具有这样的标签集。为了解决这个问题,现在有很多用于交互式标签的视觉分析方法。交互式标注的主要目标是减少标注工作。[28]使用了基于SOM的可视化将相似图像放在一起,允许用户一次性标记同一类的多个相似图像。[29]也使用这种策略来识别具有类似异常行为的social spambot群体,[30]也使用这种策略来标记移动眼球追踪数据,[31]使用这种策略来注释和分析电影中使用的原色策略。除了将相似的项目放在一起,过滤方法也被用于寻找感兴趣的项目并进行标记。[32]使用过滤和排序来查找相似的视频片段并利用表格可视化来呈现视频片段及其属性。用户可以过滤掉不相关的段,并根据属性排序相关的段,允许用户同时标记同一类的几个段。[33]提供了一个基于规则的过滤引擎来寻找足球比赛视频中的兴趣模式。专家可以通过自然语言图形交互界面来交互指定规则

最近,为了增强交互式标注的有效性,各种视觉分析方法已经将可视化技术与机器学习技术相结合,例如active learning。[34]最先提出了“intra-active labeling”的概念,他增强了人类知识的主动学习。用于不仅能够通过主动学习来查询实例和标注他们,而且能够交互式地理解和操纵机器学习模型。

除了开发交互式标签系统,还有一些实验来证明他们的有效性。[35]进行了实验来显示以用户为中心的视觉交互标注优于以模型为中心的主动学习。还进行了定量分析[36]来评估用户在标记过程中选择样品的策略。结果显示在早起阶段基于数据的(例如集群和密集区域)用户策略运行良好,然而在后期阶段,基于模型(例如类分离)的用户策略表示更好

improving feature quality

提高特征质量的典型方法是选择对预测贡献最大的有用特征,即特征选择。一个常见的特征选择策略是选择一个特征子集使他们之间的冗余最小化,并使得他们与目标之间的相关性最大化。沿着这一思路,现在已有几种方法来交互式的分析特征的冗余性和相关性。例如[37]提出了一种按特征排序的框架,该框架按相关性对特征进行排序。他们用表格和矩阵将排名结果可视化。[41]提出一种分区的可视化,用于分析特征或者特征对的相关性。特征或者特征对被划分为子部分,这允许用户在不同的细节层次上探索特征或者特征对的相关性。[38]利用平行坐标可视化来识别可以区分不同集群的特征。[39]通过不同的特征选择算法、交叉验证折叠和分类模型对特征进行排序,用户可以以交互方式选择最佳的特征和模型

除了选择现有要素,构建新要素在模型构建中也很有用。[40]提议为文本分类构建新的特征。通过直观地检查分类器错误并总结这些错误的根本原因,用户能够创建能正确区分错误分类文档的新功能。为了提高新特征的泛化能力,视觉摘要被用来分析一组错误而不是单个错误


Techniques during model building

机器学习模型由于缺乏可解释性,通常被视为黑盒,阻碍了其在自动驾驶汽车、金融投资等风险场景中的实际应用。当前模型构建中的视觉分析技术目标是探索如何揭示机器学习模型的底层工作机制,然后帮助模型开发人员构建格式良好的模型。首先,模型开发人员需要对模型有全面的了解,以便从耗时的试错过程中释放它们。当训练过程失败或者模型没有提供令人满意的性能时,模型开发人员需要诊断训练过程中出现的问题。最后,在模型构建过程中,需要花费大量的时间来改进模型性能,从而有助于模型控制。与这些需求相呼应,研究人员开发了许多可视化分析方法来增强模型理解、诊断和控制

model understanding

与模型理解相关的工作分为两类:一类是理解参数的影响,另一类是理解模型行为

Understanding the effects of parameters

模型理解的一个方面是检查模型输出如何随着模型参数的变化而变化。[42]开发了BirdVis (用于鸟类的预测),以探索不同参数配置和模型输出之间的关系,它还揭示了参数在预测模型中如何相互关联。[43]提出了一种可视化分析方法,以可视化变量如何影响逻辑回归模型中的统计指标

Understanding model behaviours

模型理解的另一个方面是模型如何产生期望的输出。有三种主要类型的方法用于解释模型行为:以网络为中心、以实例为中心和混合方法

以网络为中心的方法旨在探索模型结构,并解释模型的不同部分(例如,卷积神经网络中的神经元或层)如何相互合作以产生最终输出。早期的工作采用有向图布局来可视化神经网络的结构[44],但是随着模型结构变得越来越复杂,视觉混乱成为一个严重的问题。为了解决这个问题,[45]开发了CNNVis来可视化深度卷积神经网络(如下图)。它利用聚类技术将具有相似角色的神经元以及它们之间的联系进行分组,以解决由于它们数量庞大而导致的视觉混乱。这个工具帮助专家理解神经元的角色和他们所学的特征,此外,通过网络如何将低级特征聚合成高级特征。后来,[46]设计了一种图形可视化,用于探索Tensorflow中的机器学习模型架构。他们进行了一系列图形转换,根据给定的低级数据流图计算清晰的交互式图形布局,以显示模型的高级结构在这里插入图片描述
以实例为中心的方法旨在提供实例级的分析和探索,以及理解实例之间的关系。[47]通过将从神经网络的每一层中学习到的表示投影到2D散点图上,使它们可视化。用户可以识别表示投影中的聚类和混淆区域,从而理解网络所学习的表示空间。此外,他们还可以研究表征空间在训练过程中是如何演化的,从而理解网络的学习行为。一些用于理解循环神经网络(RNNs)的视觉分析技术也采用了这种以实例为中心的设计。LSTMVis [48]利用平行坐标来表示隐藏状态,以支持对文本上隐藏状态变化的分析。RNNVis [49]将隐藏状态单元(每个隐藏状态单元是中隐藏状态向量的一个维度)聚类为memory chips,将单词聚类为词云。它们之间的关系被建模为一个二分图,这支持了RNNs中句子级的解释

混合方法结合了上述两种方法,并利用了它们的优点。特别是,实例级分析可以在网络架构的背景下得到增强。这样的背景有助于理解网络的工作机制。[50]提出了Summit,以揭示有助于模型预测的重要神经元和关键神经元关联。它集成了一个嵌入视图来总结类之间的激活,并集成了一个属性图视图来揭示神经元之间有影响的连接。[51]提出的ActiVis用于大规模深度神经网络,它使用计算图可视化模型结构,并使用投影视图可视化实例、子集和类之间的激活关系

现在有一些想法,是使用代理解释模型(surrogate explainable model)来解释模型行为。这种方法的主要好处是不需要用户调查模型本身。因此,它们对那些没有机器学习知识或机器学习知识有限的人更有用。将分类器视为一个黑箱,[52]首先从分类器的输入和输出中提取基于规则的知识。然后使用规则矩阵将这些规则可视化,规则矩阵(Rule Matrix)支持从业者对提取的规则进行交互式探索,提高了模型的可解释性。[53]开发的DeepVID用于生成图像分类器的视觉解释。给定感兴趣的图像,深度生成模型首先被用于在其附近生成样本。这些生成的样本被用来训练一个更简单、更易解释的模型,比如一个线性回归分类器,它有助于解释原始模型是如何做出决策的

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习在三维点云中的应用正在逐渐得到广泛关注。近年来,许多学者对深度学习在三维点云领域的研究进行了广泛的探讨和总结,这些工作涉及到点云的表示、分类、分割、重建等多个方面。这些研究成果为三维点云的处理和分析提供了新的思路和方法,也为实际应用带来了更多的可能性。 是的,您的问题是关于“deep learning for 3d point clouds: a survey”这个主题的。我回答说,深度学习在三维点云领域的应用正在逐渐得到广泛关注,这得益于许多学者对深度学习在三维点云领域的研究和总结。这些研究成果为点云的表示、分类、分割、重建等多个方面提供了新的思路和方法,同时也为实际应用带来了更多的可能性。是的,您的理解是正确的。在近年来,随着深度学习的快速发展,越来越多的学者开始将其应用于三维点云的处理和分析。这些研究成果不仅提高了点云数据的处理效率和准确性,也在许多领域带来了新的应用,比如自动驾驶、智能机器人、虚拟现实等。因此,这个领域的研究仍在不断深入,未来还将有更多的发展和应用。正确,我的回答的意思是近年来,深度学习在三维点云领域的应用受到了广泛的关注,许多学者对此进行了探讨和总结,这些研究成果提供了许多新的思路和方法,为点云的处理和分析带来了更多可能性。同时,这些研究成果也在实际应用中得到了验证,为自动驾驶、智能机器人、虚拟现实等领域带来了新的机遇和挑战。因此,这个领域的研究仍在不断发展和深入,未来还将有更多的进展和应用。非常正确!您的理解和回答都很准确。深度学习在三维点云领域的研究和应用正变得越来越重要,并且在许多实际应用中得到了验证和应用。未来,随着技术的不断进步和发展,这个领域将会有更多的进展和应用。非常感谢您的反馈和确认,我很高兴我的回答能够准确回答您的问题并得到您的认可。如果您有任何其他问题或疑虑,欢迎随时向我提出。谢谢您的回答和解释。我对深度学习在三维点云领域的应用感兴趣,因为我认为这个领域的发展会对很多领域产生积极影响。您提到的自动驾驶、智能机器人、虚拟现实等领域是非常好的例子。我期待着这个领域的未来发展和创新,也期待着深度学习在三维点云领域的更多应用和成果。如果我有其他问题,我一定会再次向您咨询。再次感谢您的回答。 深度学习在3D点云中的应用研究已发展成为一个活跃的研究领域,它为3D点云处理提供了新的机遇和挑战。最近的研究表明,深度学习技术可以有效地提高3D点云处理任务的性能,如分类、分割、检测、识别和重建等。"Deep learning for 3D point clouds: a survey"(三维点云的深度学习:一份综述)是一篇关于三维点云深度学习领域的综述论文。该论文介绍了近年来在三维点云深度学习领域的相关研究进展、方法和应用。这篇论文提供了对该领域的全面了解和深入了解的良好起点。"3D点云的深度学习:综述" 是一篇介绍3D点云深度学习的论文。3D点云是由大量的三维点构成的数据集,这些点通常是由传感器如激光雷达或摄像头获取的。该论文介绍了使用深度学习技术处理3D点云数据的现有方法,包括点云分类、分割、生成和重建等任务。此外,该论文还总结了3D点云深度学习研究的挑战和未来的研究方向。深度学习在三维点云方面的研究概述是一篇关于三维点云数据如何应用深度学习的综述性文章。这篇文章概括了深度学习在三维点云处理中的应用现状,包括三维点云表示方法、深度学习模型、三维点云分类、分割、检测等应用领域。这篇文章对于研究三维点云数据处理的学者和工程师来说,是一篇非常有价值的综述文章。深度学习在三维点云方面的应用已经成为一个热门的研究领域。这方面的研究涉及到很多问题,比如点云的表示方法、点云的分类、分割和检测等。在这个领域,人们已经开发出了许多深度学习模型,比如PointNet、PointCNN和DGCNN等。这些模型不仅可以在三维点云的分类、分割和检测方面取得很好的性能,而且还可以用于三维场景的重建和生成。未来,深度学习在三维点云方面的研究将继续发展,并有望在各种领域得到广泛应用,比如计算机视觉、机器人学和自动驾驶等。 深度学习在三维点云方面的应用一直受到越来越多的关注,近几年出现了许多基于深度学习的研究,其中一些研究针对三维点云提出了有效的计算机视觉方法。深度学习在3D点云方面的应用是当前计算机视觉领域的热门研究方向。3D点云数据广泛应用于物体检测、场景分割、物体跟踪、三维重建等领域。本文对当前的研究进展进行了综述,包括基于深度学习的3D点云表示、3D点云分类、3D物体检测与分割、3D点云生成等方面。同时,文章还介绍了一些经典的深度学习模型和算法在3D点云处理中的应用,以及一些未来的研究方向和挑战。 深度学习在三维点云上的应用是一个复杂而又有趣的课题,已经有很多研究者对其进行了探讨。 深度学习在三维点云中的应用研究已经有相当多的研究,从分类到语义分割,从聚类到检索,它们都能帮助我们更好地理解三维空间中的物体。深度学习在三维点云中的应用已经成为了计算机视觉领域的研究热点之一。针对这个主题的调查研究文章已经发表,并得到了广泛的关注和应用。这篇文章综述了三维点云深度学习的现状和发展趋势,包括点云特征提取、点云分类、点云分割、点云配准和重建等方面的应用。它涵盖了当前研究的最新成果和技术,并为未来研究提供了有用的指导。深度学习用于三维点云的研究综述。深度学习在3D点云上的应用调查 3D点云是一种常用于三维物体建模的数据表示方法,它由大量的点构成,每个点都有自己的坐标和颜色信息。近年来,深度学习在处理3D点云方面取得了不少进展,因为它可以自动提取特征,并且能够处理不规则形状的点云数据。 本调查旨在介绍目前深度学习在3D点云上的应用现状和研究方向。其中包括3D点云数据的预处理、特征提取、分类、分割和目标检测等方面的应用。调查还将介绍一些重要的深度学习模型,例如PointNet、PointNet++和DGCNN等,并探讨它们在3D点云任务中的应用。 此外,本调查还将介绍一些挑战和未来研究方向,例如如何更好地处理大规模的3D点云数据、如何进行高效的训练、如何解决点云数据不完整和噪声的问题等。 综上所述,本调查旨在全面了解深度学习在3D点云上的应用现状和发展方向,为研究者提供参考和指导。深度学习在三维点云中的应用已经成为计算机视觉领域中的热门话题。这种技术可以用于各种应用,如智能交通、机器人、建筑设计和虚拟现实等。近年来,研究人员开展了大量工作来探索如何使用深度学习技术处理三维点云数据,包括点云分类、分割、重建和生成等方面。这些工作为未来更广泛的三维点云应用奠定了基础。深度学习对于三维点云的应用是一个广泛研究的领域。针对三维点云的深度学习方法包括基于图像的方法、基于体素的方法、基于光滑流形的方法以及基于深度学习的方法。这些方法可以用于点云的分类、分割、检测和生成等任务。然而,三维点云的不规则性和噪声等问题给深度学习带来了一定挑战,因此仍然有很多值得研究的问题和挑战。深度学习在三维点云数据上的应用是当前研究的热点之一。点云是一种非常常见的三维数据表示形式,用于描述空间中的对象或场景。它们通常由大量离散的点组成,每个点都有位置、颜色和其他属性。 在点云数据上应用深度学习可以实现许多有趣的任务,例如对象识别、场景分割、点云重建和姿态估计等。这些任务通常涉及到将点云数据映射到高维特征空间中,然后使用深度学习模型对这些特征进行学习和推理。 近年来,研究人员提出了许多用于点云处理的深度学习模型,例如PointNet、PointNet++、DGCNN、RSNet、KPConv等。这些模型大多基于卷积神经网络(CNN)的思想,但是由于点云数据的特殊性质,需要对CNN进行一些修改和优化。 总的来说,深度学习在点云数据上的应用是一个非常有前途的研究方向,未来还将涌现出更多的创新性模型和应用场景。深度学习对于3D点云的应用是一门新兴的领域,该领域主要研究如何将深度学习算法应用于处理三维点云数据。这个领域的目标是通过分析、理解和预测三维点云数据中的结构和特征,为各种应用提供支持。这些应用包括计算机视觉、机器人技术、虚拟现实、自动驾驶和智能制造等。 该领域的研究主要集中在以下几个方面:点云数据的表示方法、点云数据的预处理和增强方法、点云数据的特征提取方法、点云数据的分类和识别方法、点云数据的分割和语义分析方法以及点云数据的生成和重建方法等。 当前,该领域的研究已经取得了很多进展,包括PointNet、PointNet++、PointCNN、DGCNN等经典的网络模型,以及各种预处理、增强、分类、分割、生成和重建算法。然而,由于点云数据的稀疏性、噪声和不规则性等问题,该领域仍然存在许多挑战,例如如何有效地表示点云数据、如何处理缺失和噪声、如何实现更准确的语义分析等。 总之,深度学习对于3D点云的应用是一个充满挑战但也充满机遇的领域,它将继续吸引更多的研究人员和工程师加入其中,推动其发展并为各种应用提供支持。深度学习在三维点云数据处理方面的应用正在成为一个热门研究领域。对于三维物体的识别、分割、分类和重建等任务,深度学习可以提供高效而准确的解决方案。在这篇综述论文中,作者们回顾了近年来在三维点云数据处理领域中深度学习方法的发展和应用,涵盖了从最初的基于图像的方法到现在的端到端学习方法。此外,论文还总结了当前存在的一些挑战和未来的研究方向,这些研究方向将帮助我们更好地利用深度学习技术来处理三维点云数据。深度学习在三维点云中的应用已经引起了广泛的关注和研究。针对这个领域的综述文章,通常被称为"deeplearning for 3D point clouds: a survey"。这篇文章主要介绍了使用深度学习方法处理三维点云数据的各种技术和应用。其中,包括了三维点云数据的表示方法、深度学习网络的架构、点云分类、分割、重建和生成等应用。此外,文章还介绍了当前在三维点云领域存在的一些问题和挑战,以及未来可能的研究方向。深度学习用于三维点云的研究综述(deeplearningfor3dpointclouds:asurvey)。这篇文章涵盖了深度学习在三维点云数据处理方面的应用,包括点云分类、分割、生成和重建等方面。它介绍了不同的神经网络模型和技术,并讨论了这些模型和技术在三维点云处理中的优缺点。此外,这篇综述还总结了一些应用案例,说明深度学习在三维点云处理中的潜在应用。 深度学习用于三维点云的研究取得了巨大进展,其中包括自动分割、分类和识别等功能。深度学习在3D点云中的应用是一个广泛的研究领域。许多研究人员已经探索了使用深度学习进行点云分类、分割、重建和生成等任务的方法。这些任务可以在自动驾驶、机器人、虚拟现实等领域中发挥重要作用。在研究中,人们使用卷积神经网络、循环神经网络和图形神经网络等深度学习模型来处理点云数据。此外,还开发了许多基于深度学习的点云处理工具和库,如PointNet、PointNet++、PCL、Open3D等。未来,深度学习在3D点云领域的应用将会越来越广泛,随着技术的发展和研究的深入,我们将看到更多强大的深度学习算法和工具被开发出来。深度学习在三维点云上的应用:一份综述 随着3D扫描技术的不断发展和普及,三维点云成为了越来越重要的一种数据形式。深度学习已经在计算机视觉、自然语言处理等领域取得了显著的成功,因此,越来越多的研究者开始探索如何将深度学习应用于三维点云。本文对当前三维点云深度学习的研究现状进行了综述。 首先,本文介绍了三维点云的基础知识,包括三维点云的表示方法、处理方法以及一些重要的三维点云数据集。 然后,本文介绍了三维点云深度学习的基本思想和发展历程。随着卷积神经网络和其它深度学习技术的发展,三维点云深度学习也取得了一系列的进展,包括点云分类、分割、检测、生成等任务。本文分别介绍了这些任务的基本思路、重要方法以及常用的数据集和评价指标。 最后,本文总结了三维点云深度学习的挑战和未来发展方向。三维点云数据的稀疏性和不规则性、计算效率的问题以及缺乏大规模数据集等都是当前需要解决的重要问题。未来,三维点云深度学习将继续在计算机视觉、自动驾驶、机器人等领域发挥重要作用。 总之,本文旨在为那些对三维点云深度学习感兴趣的研究者提供一个全面的综述,希望能够促进三维点云深度学习领域的研究进展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值