数据处理时踩坑总结【持续更新版】

这篇博客总结了在数据处理过程中遇到的一些问题及其解决办法,包括在DataFrame的iterrows迭代中无法直接修改源数据,不推荐在循环中使用append和drop函数,如何处理长hash值的字典匹配,以及在Anaconda环境下使用pip安装模块的技巧,还有如何将文件夹上传到服务器端的Jupyter环境。
摘要由CSDN通过智能技术生成

DataFrame的iterrows迭代中无法直接修改源数据

在iterrows中,尝试使用index和row对DataFrame类型的变量直接进行更改,但是输出时发现值没有改变

这是因为使用row[‘列名’]修改的值是临时的,不是对原数据直接修改

解决方案:在修改语句的末尾添加:

df.iloc[index] = row

通过该种方式将row修改后的临时值传回,确保原数据的改动

尽量不要在循环中使用DataFrame的append函数和drop函数

在处理数据的时候如果直接在循环里面用append和drop就会越来越慢

可以先创建一个list把返回值或者需要处理的index先存起来,然后再统一使用一次df.append或者df.drop

delete_index = []
delete.append(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值