信息隐藏|Generative Steganography Network

来源ACMMM2022

提出问题:

隐写术通常修改载体媒体以嵌入秘密数据。最近出现了一种新的隐写方法,称为生成隐写(GS),其中隐写图像(包含秘密数据的图像)直接从秘密数据生成,而不需载体盖介质。然而,现有的GS方案经常因性能差而受到批评

解决问题:

本文中提出了一种先进的生成隐写网络(GSN)在不使用载体图像的情况下生成逼真的隐写图像

首先引入了互信息机制,这有助于实现高的秘密提取精度。模型包含四个子网络,即图像生成器(𝐺),鉴别器(𝐷),隐写分析器(𝑆)和数据提取器(E)。𝐷和𝑆作为两个对抗的鉴别器,以确保生成的隐写图像的视觉质量和安全性。E从生成的隐写图像中提取隐藏的秘密。生成器𝐺构造灵活,可以根据不同输入合成载体或隐写图像。它将生成隐秘图像的功能隐藏在普通生成器中,从而方便了隐秘通信。在图像生成过程中设计了秘密块模块,将秘密数据隐藏在特征映射中,具有较高的隐藏能力和图像保真度。提出了一种新的分层梯度衰减(HGD)技术来抵抗隐写分析检测。

什么是生成式隐写术?:

修改载体图像会造成视觉或统计上的扭曲,使得隐写图像很容易被隐写分析工具检测出来。一旦被发现,隐蔽通信的行为就会失败。为了解决这一问题,一种新的隐写方式——生成隐写(GS)应运而生。它不是通过修改封面图像来嵌入秘密数据,而是直接从秘密数据合成隐写图像,如图所示。在GS中不需要载体图像,因此隐写分析工具将变得无效。原理图如下:

输入的秘密数据通过生成器转换为自然隐写图像,然后这些图像通过无损信道传输。

通过提取器可以从接收到的隐写图像中恢复隐藏的秘密数据。

本文提出的GSN方法

本文提出的GSN架构如图所示,它由生成器(G)、鉴别器(D)、隐写分析器(S)和提取器(E)组成,其中DS作为GAN中的两个鉴别器,可以保证视觉质量,减少生成的载体/隐写图像之间的差异。

GSN的输入包括潜在向量z噪声矩阵n秘密数据d的三维矩阵。根据(z, n)(z, d)中哪个是输入,生成器可以生成载体图像x c或隐进图像xs。然后,将真实图像和生成的隐写图像发送给鉴别器来判断它们是真还是假。同时,将生成的载体/隐写图像送入隐写分析仪进行差分。将生成的隐写图像输入到提取器中,d '为预测的秘密。

当输入(z, n)/(z, d)时,可以生成载体/隐写图像。(输入的组合不同,输出不同)

DS作为双重鉴别器,保证了载体/隐写图像的视觉质量和统计不可感知性E的目的是从生成的隐写图像中恢复隐藏的秘密。

问题公式化:

在本文方案中,可以使用秘密数据d潜在数据z生成一幅隐写图像,即xs =𝐺(z, d)。秘密数据影响图像内容,需要从生成的隐写图像xs中精确地恢复图像内容。从信息论的角度来看,期望dxs之间的互信息最大,即max𝐼(d,𝐺(z, d))也就是说,输入的秘密数据和生成的隐写图像是密切相关的。当输入的秘密数据发生变化时,需要生成不同的隐写图像,并希望从生成的隐写图像中准确提取出隐藏的秘密。因此,我们将互信息整合到GAN中进行数据隐藏。损失函数可定义为:G想要最小化而D想要最大化这个损失函数。

但是互信息𝐼(d,𝐺(z, d))很难得到,因为它需要后验分布𝑝(d |𝐺(z, d))。受Infogan的启发,使用变化下界L𝑑(𝐺,E)来近似𝐼(d,𝐺(z, d)):

本文方案中,G可以合成载体图像(xc =𝐺(z, n))和隐图像(xs =𝐺(z, d))。隐写分析器S采用了一种隐写分析算法SR-net作为主干,其目的是最小化生成的隐写/隐写图像之间的统计差异。G和S之间的对抗损失写成L𝑆(𝑆,𝐺)。与L𝑑(𝐺,E)不同,S希望在二值交叉熵损失的情况下输出正确的预测结果([0,1]或[1,0]),而G希望S对载体图像和隐写图像都输出[0.5,0.5],如Eq.7和Eq.10所述。G和S的目标都是最小化这两种损失。

     为了生成真实、高秘密提取率和良好不可检测性的隐写图像,我们结合上述损失函数,将整体优化目标设置为:

这里,G, SE都希望最小化𝐿𝑡𝑜𝑡𝑎𝑙(𝐷,𝐺,𝑆,),而D希望最大化它。𝜆λ𝛽β是两个超参数。

损失函数:

在本节中,将𝐿𝑡𝑜𝑡𝑎𝑙(𝐷,𝐺,𝑆,E)分解为每个子网络的特定损失函数。

生成器的损失考虑了两个对抗性训练过程和一个正则化项:L𝑎𝑑𝑣是𝐷和𝐺之间的对抗损失。L𝑠𝑡𝑒𝑔是G对S的对抗损失,这确保了𝑆的输出对于载体图像和隐写图像都接近0.5(即𝑆无法区分图像的来源)。

鉴别器损失定义为:

隐写分析器损失为:在隐写分析器(S)中采用了二值交叉熵损失。S输出一个二维向量,而不是像GAN那样的标量,被训练为输出输入载体/隐写图像的正确预测([0,1]或[1,0])。y1/y2载体/隐写图像的GT

提取隐藏秘密的损失由二值交叉熵计算,预测结果F(如图所示),加入噪声,输入二值数据d:

𝑆i𝑔𝑚𝑜i𝑑(·)使结果属于(0,1)。在这里,在生成的隐写图像中加入随机噪声(~N(0,0.01))以提高鲁棒性。GE都进行了优化,尽量减少这种损失。

训练策略:

为了有效地训练GSN,依次对子网络𝐺、𝐷、𝑆和进行优化,如算法1所示。同时优化𝐺和E以提高秘密提取的准确性,其中应用了层次梯度衰减(HGD)技能(将在3.7节中介绍)来提高对隐写分析方法的抵抗力。分别用𝐿𝑜𝑠𝑠𝐺和𝐿𝑜𝑠𝑠E对G进行优化,主要是为了减少生成的载体/隐图像之间的差异真实图像只用于训练D

生成器结构:

提取器结构:

隐写分析器和鉴别器:

如图所示,𝑆的输入是合成的载体图像和隐写图像𝐷的输入是真实图像和合成的隐写图像(或载体图像,两者结果相似)。   

数据集:CelebALsun-bedroom数据集

评价指标:Frechet inception distance (Fid)extraction accuracy (Acc)detection error (Pe)分别评价生成的隐写图像的视觉质量、secret extraction的准确性和安全性。Fid越低,图像质量越好。Pe是评价隐写图像不可检出性的常用指标,Pe的取值范围为[0,1],其最优值为0.5。当Pe = 0.5时,隐写分析工具无法区分图像的来源。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值