使用spark mllib中协同过滤推荐算法ALS建立推荐模型
package com.yyds.tags.ml.rs.rdd
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* 使用spark mllib中协同过滤推荐算法ALS建立推荐模型
*
* a 预测用户对某个电影的评价
* b 为某个用户推荐10个电影
* c 为某个电影推荐10个用户
*/
object SparkAlsRmdAndMovie {
def main(args: Array[String]): Unit = {
// 1 构建SparkContext对象
val sc: SparkContext = {
// 创建spark conf对象
val sparkConf: SparkConf = new SparkConf()
.setMaster("local[4]")
.setAppName(this.getClass.getSimpleName.stripSuffix("$"))
val context: SparkContext = SparkContext.getOrCreate(sparkConf)
// 设置检查点
context.setCheckpointDir("data/ckpt/als-ml-" + System.currentTimeMillis())
context
}
// 读取电影评分数据
val rawRDD: RDD[String] = sc.textFile("datas/u.data")
println(s"Count = ${rawRDD.count()}")
println(s"First = ${rawRDD.first()}")
// 数据转换,构建RDD[Rating]
val ratingRDD: RDD[Rating] = rawRDD
//过滤
.filter(line => null != line && line.split("\\t").length == 4)
.map{
line =>
val Array(userId,movieId,rating,_) = line.split("\\t")
Rating(userId.toInt,movieId.toInt,rating.toDouble)
}
// 划分训练集和测试集
val Array(trainRatings,testRatings) = ratingRDD.randomSplit(Array(0.8, 0.2))
val alsModel: MatrixFactorizationModel = ALS.train(
ratings = trainRatings,
rank = 10, // 特征数
iterations = 20 // 迭代次数
)
// 获取因子矩阵
val userFeatures: RDD[(Int, Array[Double])] = alsModel.userFeatures
// 获取物品因子矩阵
val productFeatures: RDD[(Int, Array[Double])] = alsModel.productFeatures
// TODO 模型评估
val realRatingsRDD: RDD[((Int, Int), Double)] = testRatings.map {
tuple =>
((tuple.user, tuple.product), tuple.rating)
}
// 使用模型对测试数据进行预测
val predictRatingsRDD: RDD[((Int, Int), Double)] = alsModel
.predict(realRatingsRDD.map(_._1))
.map(tuple =>
((tuple.user, tuple.product), tuple.rating)
)
// 合并预测值和真实值
val predictAndRealRDD: RDD[((Int, Int), (Double, Double))] = predictRatingsRDD
.join(realRatingsRDD)
val metrics: RegressionMetrics = new RegressionMetrics(predictAndRealRDD.map(_._2))
println(s"RMSE = ${metrics.rootMeanSquaredError}")
println("----------------预测196用户对电影242的评分-----------------------")
// TODO 预测
val predict: Double = alsModel.predict(196, 242)
println(s"预测196用户对电影242的评分: $predict")
println("----------------为196用户推荐的10部电影-----------------------")
// 为196用户推荐的10部电影
val movies: Array[Rating] = alsModel.recommendProducts(196, 10)
movies.foreach(println)
println("----------------为242电影推荐的10个用户-----------------------")
// 为242电影推荐的10个用户
val users: Array[Rating] = alsModel.recommendUsers(242, 10)
users.foreach(println)
// TODO 保存和加载模型
val path = "datas/als/ml-als-model-" + System.currentTimeMillis()
alsModel.save(sc,path)
// 加载
// val model: MatrixFactorizationModel = MatrixFactorizationModel.load(sc, path)
// 休眠
Thread.sleep(10000000L)
sc.stop()
}
}