EANN

EANN论文笔记

Abstract

fake new检测,主要落脚点在于检测新出现的紧急事件。过去的方法主要是学习了事件相关的特定特征,并不具备泛化性和通用性,所以对新出现的事件效果不好。文章提出了EANN来解决这个问题。

EANN包括三个部分,多模态特征提取器,虚假新闻检测和事件检测。多模态提取视觉和文本信息,主要是事件检测器去除多模态特征中与事件有关的特征,让虚假新闻检测使用分享的特征。

数据集从微博和推特收集。

Introduction

虚假新闻的坏处和检测的必要性。再次重述现在的模型提取特征的局限性。

首先做的是identify the event-specific features.转化成衡量不同的事件提取的特征之间的差别。(用L2距离可能不太适合,并且学习过程中提取特征在变化)

使用事件检测来衡量差别,loss越大,差别越小。特征提取需要让检测器很难检测出来是哪个类型的事件(对抗的思想)

Related work

rumor detection 谣言检测 spam detection 垃圾邮件检测

单模态检测:统计和语义特征。文本RNN,视觉特征还有一些社交特征比如follower数量,tag和转发。这个噪音比较多,并且对于新出现的事件没有什么作用。

多模态检测:

Adversarial network

对抗网络思想用于半监督学习等等领域,还可以建模为Minimax游戏。特征提取器的任务就是fool 检测器。

Model

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jqHc0kjI-1616220897143)(D:\study\论文\multimodal\EANN\1.png)]

TextCNN。使用了预训练的词向量。使用了不同窗口和多个卷积核。

VGG19。

Fake News Detector:两层全连接网络。使用交叉熵损失(普通分类)

Event Discriminator: 一个k分类神经网络。

Model Intergration

L f i n a l ( θ f , θ d , θ e ) = L d ( θ f , θ d ) − λ L e ( θ f , θ e ) L_{final}(\theta_f,\theta_d,\theta_e) = L_d(\theta_f,\theta_d) - \lambda L_e(\theta_f,\theta_e) Lfinal(θf,θd,θe)=Ld(θf,θd)λLe(θf,θe)

Ld是fake new分类误差,越小越好,Le是事件检测误差,越大越好。lambda是超参数。文章设置为1。
( θ f − , θ d − ) = a r g m i n θ d , θ f L f i n a l θ e − = a r g m a x θ e L f i n a l (\theta_f^-,\theta^-_d) = argmin_{\theta_d,\theta_f} L_{final} \\ \theta_e^- = argmax_{\theta_e} L_{final} (θf,θd)=argminθd,θfLfinalθe=argmaxθeLfinal
两个对立的优化函数。theta_f通过SGD优化。

Gradient reversal layer(GRL)在前向传播的时候类似恒等函数,反向传播的时候乘以- lambda传递梯度。

学习率延迟

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sCgGEEmZ-1616220897145)(D:\study\论文\multimodal\EANN\QQ截图20210129131937.png)]

主要的优化策略就是交替优化。

Experiments

Twitter dataset: MediaEval Verifying Multimedia Use benchmark 使用early stop策略

Weibo Dataset: 都是新闻,2012到2016的。

Baselines: TextCNN, VGG19(单模态) VQA,NeuralTalk,att-RNN(SOTA)

主要是quantitative analysis,对每个单模态的模型设计一个对抗模型,通过实验发现有对抗模型都提高了正确率。说明对抗模块是有效的。

Qualitative analysis :使用t-SHE降维表示两种类型的特征表示,可以看到有对抗模块更加分散,两种更加分明。

展示了几张多模态检测出来但是单模态失败的几张图片例子。

s :使用t-SHE降维表示两种类型的特征表示,可以看到有对抗模块更加分散,两种更加分明。

展示了几张多模态检测出来但是单模态失败的几张图片例子。

还分析了一下三种LOSS在训练和测试过程中的下降,来了解minimax过程。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值