多模态情感识别数据集和模型(下载地址+最新综述2021.8)

本文深入探讨了多模态情感识别(MER)的各个方面,包括数据集、表达模型、诱发方式、识别任务、挑战与困难、方法论和实际应用。重点介绍了基于神经网络的特征学习、融合策略以及分类器优化。同时,讨论了域自适应、上下文建模和无监督学习在应对数据不完整性和模态不一致性等问题中的作用。未来趋势涉及将情感理论融入模型、实际场景的应用及安全隐私问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引用论文:Zhao, Sicheng, et al. “Emotion Recognition from Multiple Modalities: Fundamentals and Methodologies.” arXiv preprint arXiv:2108.10152 (2021).
PDF链接:Emotion Recognition from Multiple Modalities: Fundamentals and Methodologies.

新鲜出炉的赵思成和杨巨峰大佬的论文哦(情感识别领域的专家),全面的梳理了多模态情感识别(Multi-modal Emotion Recognition, MER)的多个关键方面,是一篇日期新鲜(2021.08),内容详实,高质量的综述,非常适合入门的同学入手和老司机们回顾总结。翻译和整理了一上午,有用请帮我点个赞再走吧,谢谢Thanks♪(・ω・)ノ~

一、多模态数据集

下表为多模态数据集,可以看到最后一列给出了下载地址,需要数据集的朋友们可以点上面链接地址进入文章下载,如果除了数据集还想了解多模态情感识别(MER)的其他章节内容(模型,难点,挑战,任务,方法,应用),请继续往下阅读哦~
多模态数据集

多模态情感识别情感诱发方式

二、广泛使用的情感表达模型

目前,学术界对情绪分类并没有统一的定义,一般的情绪分类主要有两大基本观点:离散模式(categorical emotion states (CES))和连续模式( dimensional emotion space (DES))。离散模式认为情绪具有完全不同的结构,连续模式认为不同情绪之间有着过渡阶段。

1、CES情感模型定义情感通过几个基本分类,包括以下:

binary sentiment :positive and negative, sometimes including neutral;
Ekman’s six basic emotions: positive happiness, surprise and negative anger, disgust, fear, sadness;
Mikels’s eight emotions: positive amusement, awe, contentment, excitement, and negative anger, disgust, fear, sadness;
Plutchik’s emotion wheel :eight basic emotion categories by three intensities;
Parrott’s tree hierarchical grouping :primary, secondary and tertiary categories.

2、DES定义情感通过连续空间的2D,3D或更高维度的的卡尔坐标系,包括以下:

valence-arousal-dominance (VAD):where valence, measure all emotions as different coordinate points in the continuous Cartesian space, but the absolute continuous values are beyond users’ understanding.

  1. PAD情感三维理论是由Mehrabian 和Russell 于1974年提出的维度观测量模型 ,该模型认为情感具有愉悦度 、激活度和优势度3个维度,其中P代表愉悦度(Pleasure-displeasure),表示主体情感状态的正负性;A代表觉醒度(Arousal-nonarousal),表示主体的神经生理激活水平;D代表优势度(Dominance-submissiveness),表示主体对情景和他人的控制状态,是个体情绪被控制和主导的状态,由内而外的自发情绪就是支配性的情绪如愤怒,由外而内的被动情绪就是服从性的情绪如害怕。同时也可以用这3个维度的值来代表具体的情绪和情感。研究表明,利用 PDA的3 个维度可有效地解释人类的情感。Mehrabian 等人利用这3个维度可解释其他42种情感量表中的绝大部分变异 ,而且这3个维度并不限于描述情感的主观体验,它与情感的外部表现、生理唤醒有较好的映射关系。前人研究表明:PAD三维情感模型可以充分地表达和量化人类情绪和情感,是情感计算研究的基础 。
  2. 情绪自我评价等级系统(SAM)
    佛罗里达大学情绪和注意研究中心教授 Bradley 和 Lang,以 PAD 模型为基础设计了一种测量被试情绪反应的情绪自我评价等级系统 SAM。SAM 通过抽象的卡通人物绘图表示愉悦度、觉醒度、支配度,如下图所示。其中,皱眉噘嘴的头像到微笑的图像代表愉悦度从低到高;从放松昏睡的图像到兴奋睁眼的图像表示觉醒度从弱到强;从小人到大人的图像表示支配度从小到大。
    SAM情绪量表
    These two types of definitions of emotions are related, with possible transformation from CES to DES. For example, anger relates to negative valence, high arousal, and high dominance. Besides emotion, there are several other widely used concepts in affective computing, such as mood, affect, and sentiment. Emotions can be expected, induced, or perceived. We do not aim distinguishing them in this article. Please refer to [11] for more details on the differences or correlations between these concepts.(两种模型之间可以想换转换)

三、多模态情感诱发方式

在MER(多模态情感识别)领域,多种模式(multi-modal)被用于识别和预测人类情绪。根据情感是来自人体的身体变化还是来自外部数字媒体,MER中的情感模态可以大致分为两类:
显性情感线索&#x

### 整合外部知识源于多模态情感分析 为了增强多模态情感分析模型的表现力,可以通过引入外部知识来补充原始数据所携带的信息量不足之处。具体而言,有几种有效的方式可以在多模态情感识别(MER)框架内实现这一点: #### 使用结构化数据库 一种常见做法是从已有的结构化数据库获取额外的知识点,比如WordNet这样的语义词典或是专门针对某一领域的情感词汇表。这类资源能提供关于词语间关系及其蕴含的情绪倾向性的精确描述[^3]。 ```python from nltk.corpus import wordnet as wn def get_synsets(word): """ 获取单词的同义词集合 """ synsets = wn.synsets(word) return [str(synset.definition()) for synset in synsets] print(get_synsets('happy')) ``` #### 结合常识推理引擎 另一个策略是采用诸如ConceptNet之类的常识图谱工具,它不仅包含了广泛的概念关联网络,还支持跨语言查询功能。这有助于捕捉更深层次的人类认知模式,并将其应用于理解复杂场景下的情感状态变化过程[^4]。 ```json { "edges": [ { "start": "/c/en/happiness", "end": "/c/en/joy", "rel": "/r/Synonym" }, ... ] } ``` #### 利用预训练的语言模型 还可以借助BERT等大型预训练语言模型抽取文本片段背后的潜在含义,进而辅助判断其中隐含的态度色彩。这种方法特别适合处理那些仅靠表面特征难以准确把握的情况[^1]。 ```bash pip install transformers torch ``` ```python import torch from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') inputs = tokenizer("I love this movie!", return_tensors="pt") labels = torch.tensor([1]).unsqueeze(0) outputs = model(**inputs, labels=labels) loss = outputs.loss logits = outputs.logits ``` 通过上述手段之一或多者组合运用,可以有效地提升多模态情感分析系统的精准度可靠性,使其更好地服务于实际应用场景需求。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值