tf.nn.conv2d初探

本文通过实例探讨了在TensorFlow中使用tf.nn.conv2d进行卷积操作,详细解释了参数含义,包括输入数据、卷积核、步长和填充方式。同时,阐述了多通道卷积的工作原理,并提到了在处理plt.imshow()时的数据转换注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前因

打算自己写代码,实现cifar10数据的cnn,在码代码的过程中,发现对tf.nn.conv2d等函数的处理结果不甚了解,也不清楚多通道时数据的计算方法,故做了以下测试

二、代码

环境:python3.6、tensorflow1.14

import pickle
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

#读取Cifar10的函数
def loadCifar10(path):
    with open(path,'rb') as fo:
        dict=pickle.load(fo,encoding='bytes')
    return dict


dict=loadCifar10('.\cifar-10-batches-py\data_batch_1')

data=dict[b'data']
labels=np.reshape(np.array(dict[b'labels']),[10000,1])

data0=data[0]  #读第0张图

input_data=tf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值