贝叶斯公式与朴素贝叶斯算法

贝叶斯公式

引言

曲奇饼问题:假设有两碗饼干,碗1中有30个香草饼干和10个巧克力饼干,碗2中含有香草和巧克力饼干各20个。随机的从一个碗中拿一块饼干,拿到的饼干是香草味的,问:这个香草饼干是从碗1中拿到的概率是多少?

事件A:饼干是在碗1中拿的;

事件B:拿到饼干是香草饼干;

显然事件A的先验概率 P ( A ) = 1 2 P(A)=\frac{1}{2} P(A)=21,可以将已知拿到的饼干是香草饼干(即事件B)理解为证据,在知道这个证据后,对事件A发生的概率做一个重新评估,即事件A的后验概率 P ( A ∣ B ) P(A|B) P(AB)

贝叶斯公式的理解

如下为贝叶斯公式,其中 P ( A ) P(A) P(A) 为事件A的先验概率 P ( A ∣ B ) P(A|B) P(AB) 为事件 A 的后验概率 ,且后验概率的计算融合了先验概率的值。
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)=\frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)
这里事件B可以理解为证据,事件 A 可以理解为待推理的事件,后验概率 P ( A ∣ B ) P(A|B) P(AB) 是在给出事件 B 为证据的基础上,对 P ( A ) P(A) P(A) 值的推理更新。

对贝叶斯公式的理解:后验概率 P ( A ∣ B ) P(A|B) P(AB)就是先验概率 P ( A ) P(A) P(A)乘以一个调整因子 P ( B ∣ A ) P ( B ) \frac{P(B|A)}{P(B)} P(B)P(BA),亦即根据数据或信息的更新,对事件的可能性进行重新评估。

贝叶斯公式的推导

在推到贝叶斯公式之前,首先需要了解条件概率公式:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
其中, P ( A B ) P(AB) P(AB) 为事件A和B同时发生的概率,且有:
P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(AB)=P(A|B)P(B)=P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)
注:若事件A和B独立(事件B发生与否对事件A没有影响),即 P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A),则 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

对式(3)做简单的等式变换,即可得到贝叶斯公式:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)=\frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)

结合全概率公式的贝叶斯

在现实世界中,我们可以把事件A看作结果,把事件 B 1 , B 2 , . . . , B N B_1,B_2,...,B_N B1,B2,...,BN看作导致这个结果的各种原因。那么,我们所介绍的全概率公式
P ( A ) = P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + . . . + P ( B n ) P ( A ∣ B n ) P(A)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+...+P(B_n)P(A|B_n) P(A)=P(B1)P(AB1)+P(B2)P(AB2)+...+P(Bn)P(ABn)
就是由各种原因推理出结果事件发生的概率,是由因到果

但是,实际上还存在着一类重要的应用场景:在我们日常生活中常常是观察到某种现象,然后去反推造成这种现象种种原因的概率。简单来说,就是由果到因。由贝叶斯公式
P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + . . . + P ( B n ) P ( A ∣ B n ) P(B_i|A)=P(B_i)\frac{P(A|B_i)}{P(A)}=\frac{P(B_i)P(A|B_i)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+...+P(B_n)P(A|B_n)} P(BiA)=P(Bi)P(A)P(ABi)=P(B1)P(AB1)+P(B2)P(AB2)+...+P(Bn)P(ABn)P(Bi)P(ABi)
最终求得的条件概率 P ( B i ∣ A ) P(B_i|A) P(BiA),就是在观察到结果事件A已经发生的情况下,推断结果事件A是由原因 B i B_i Bi造成的概率的大小,以支撑我们后续的判断。

概率 P ( B i ) P(B_i) P(Bi)被称为先验概率,指的是在没有别的前提信息情况下的概率值,这个值一般需要借助我们的经验去估计。而条件概率 P ( B i ∣ A ) P(B_i|A) P(BiA)被称作后验概率,它代表了在获得“结果事件A发生”这个信息之后原因 B i B_i Bi出现的概率,可以说后验概率是先验概率在获取了新信息之后的一种修正。

朴素贝叶斯

朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。

朴素贝叶斯分类(Naive Bayesian Classification)是以贝叶斯定理为基础并且假设特征条件之间相互独立的方法,先通过已给定的训练集,以特征词之间独立作为前提假设,学习从输入到输出的联合概率分布,再基于学习到的模型,输入X求出使得后验概率最大的输出Y。

设有样本数据集 D = { d 1 , d 2 , . . . , d n } D=\{d_1,d_2,...,d_n\} D={d1,d2,...,dn},对应样本数据的特征属性集为 X = { x 1 , x 2 , . . , x d } X=\{x_1,x_2,..,x_d\} X={x1,x2,..,xd}类变量为 Y = { y 1 , y 2 , . . . , y m } Y=\{y_1,y_2,...,y_m\} Y={y1,y2,...,ym},即D可以分为m类。其中 x 1 , x 2 , . . , x d x_1,x_2,..,x_d x1,x2,..,xd相互独立且随机,则Y的先验概率 P p r i o r = P ( Y ) P_{prior}=P(Y) Pprior=P(Y),Y的后验概率 P p o s t = P ( Y ∣ X ) P_{post}=P(Y|X) Ppost=P(YX),由朴素贝叶斯算法可得,后验概率可以由先验概率 P p r i o r P_{prior} Pprior、证据 P ( X ) P(X) P(X)、类条件概率 P ( X ∣ Y ) P(X|Y) P(XY)计算出:
P ( Y ∣ X ) = P ( Y ) P ( X ∣ Y ) P ( X ) P(Y|X)=\frac{P(Y)P(X|Y)}{P(X)} P(YX)=P(X)P(Y)P(XY)
朴素贝叶斯基于各特征之间相互独立,在给定类别为y的情况下:
P ( X ∣ Y = y ) = ∏ i = 1 d P ( x i ∣ Y = y ) P(X|Y=y)=\prod_{i=1}^dP(x_i|Y=y) P(XY=y)=i=1dP(xiY=y)
**注:**若事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An相互独立,则 P ( A 1 A 2 . . . A N ) = P ( A 1 ) P ( A 2 ) ⋅ ⋅ ⋅ P ( A n ) P(A_1A_2...A_N)=P(A_1)P(A_2)\cdot \cdot \cdot P(A_n) P(A1A2...AN)=P(A1)P(A2)P(An)

由上两式可以计算出后验概率:
P p o s t = P ( Y = y ∣ X ) = P ( Y = y ) ∏ i = 1 d P ( x i ∣ Y = y ) P ( X ) P_{post}=P(Y=y|X)=\frac{P(Y=y)\prod_{i=1}^dP(x_i|Y=y)}{P(X)} Ppost=P(Y=yX)=P(X)P(Y=y)i=1dP(xiY=y)
由于 P ( X ) P(X) P(X)的大小是固定不变的,因此在比较后验概率时,只比较上式的分子部分即可。因此可以得到一个样本数据属于类别 y i y_i yi的朴素贝叶斯计算:
P ( Y = y i ∣ x 1 , x 2 , . . . , x d ) = P ( Y = y i ) ∏ i = 1 d P ( x i ∣ Y = y i ) ∏ i = 1 d P ( x i ) P(Y=y_i|x_1,x_2,...,x_d)=\frac{P(Y=y_i)\prod_{i=1}^dP(x_i|Y=y_i)}{\prod_{i=1}^dP(x_i)} P(Y=yix1,x2,...,xd)=i=1dP(xi)P(Y=yi)i=1dP(xiY=yi)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值