PCL平面点云聚类计算法向量-可视化

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/ModelCoefficients.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/visualization/cloud_viewer.h>

typedef pcl::PointXYZ PointT;

int main (int argc, char** argv)
{
  // 创建点云对象
  pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);

  // 从文件加载点云数据
  if (pcl::io::loadPCDFile<PointT>("/path/to/your/pointcloud.pcd", *cloud) == -1)
  {
    PCL_ERROR("Couldn't read file 'pointcloud.pcd'\n");
    return -1;
  }

  // 下采样(可选)
  pcl::VoxelGrid<PointT> vg;
  vg.setInputCloud(cloud);
  vg.setLeafSize(0.01f, 0.
以下是使用PCL库对点云数据进行聚类平面拟合的示例代码: ```c++ #include <iostream> #include <pcl/point_types.h> #include <pcl/filters/voxel_grid.h> #include <pcl/features/normal_3d.h> #include <pcl/segmentation/region_growing.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/visualization/cloud_viewer.h> int main(int argc, char** argv) { // 读取点云数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); if (pcl::io::loadPCDFile<pcl::PointXYZ>("input_cloud.pcd", *cloud) == -1) { PCL_ERROR("Could not read file.\n"); return -1; } // 下采样滤波 pcl::VoxelGrid<pcl::PointXYZ> vg; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>); vg.setInputCloud(cloud); vg.setLeafSize(0.01f, 0.01f, 0.01f); vg.filter(*cloud_downsampled); // 计算向量 pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne; pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>); pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>); tree->setInputCloud(cloud_downsampled); ne.setInputCloud(cloud_downsampled); ne.setSearchMethod(tree); ne.setRadiusSearch(0.03); ne.compute(*normals); // 区域生长分割 pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> rg; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_segmented(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::Normal>::Ptr normals_segmented(new pcl::PointCloud<pcl::Normal>); std::vector<pcl::PointIndices> clusters; rg.setInputCloud(cloud_downsampled); rg.setInputNormals(normals); rg.setMinClusterSize(100); rg.setMaxClusterSize(100000); rg.setNumberOfNeighbours(30); rg.setSmoothnessThreshold(3.0 / 180.0 * M_PI); rg.setCurvatureThreshold(1.0); rg.extract(clusters); // 平面拟合 pcl::SACSegmentation<pcl::PointXYZ> seg; pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients); pcl::PointIndices::Ptr inliers(new pcl::PointIndices); seg.setOptimizeCoefficients(true); seg.setModelType(pcl::SACMODEL_PLANE); seg.setMethodType(pcl::SAC_RANSAC); seg.setMaxIterations(1000); seg.setDistanceThreshold(0.01); for (std::vector<pcl::PointIndices>::const_iterator it = clusters.begin(); it != clusters.end(); ++it) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>); for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit) { cloud_cluster->push_back((*cloud_downsampled)[*pit]); } seg.setInputCloud(cloud_cluster); seg.segment(*inliers, *coefficients); if (inliers->indices.size() == 0) { std::cerr << "Could not estimate a planar model for the given dataset." << std::endl; continue; } std::cout << "Plane coefficients: " << *coefficients << std::endl; // 将拟合结果可视化 pcl::visualization::PCLVisualizer viewer("Plane Fitting"); viewer.setBackgroundColor(0.0, 0.0, 0.0); viewer.addPointCloud<pcl::PointXYZ>(cloud_cluster, "cloud_cluster"); pcl::ModelCoefficients coeffs; coeffs.values.resize(4); coeffs.values[0] = coefficients->values[0]; coeffs.values[1] = coefficients->values[1]; coeffs.values[2] = coefficients->values[2]; coeffs.values[3] = coefficients->values[3]; viewer.addPlane(coeffs, "plane"); viewer.spin(); } return 0; } ``` 该示例代码中,我们首先读取一个点云数据,然后进行下采样滤波,计算向量,然后使用区域生长分割对点云数据进行聚类,接着对每个聚类进行平面拟合,并将拟合结果可视化。 需要注意的是,这里的点云数据格式为 `pcl::PointXYZ`,即只包含三维坐标信息,如果点云数据包括其他信息,如颜色等,需要使用其他格式的点云数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值