自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(137)
  • 资源 (1)
  • 收藏
  • 关注

原创 公路坑槽检测分析原理和思路

本文提出了一种基于点云处理的路面坑洞自动检测方法,采用三阶段处理流程:1)点云预处理(体素化下采样+移动最小二乘平滑);2)坑洞检测(差异提取+平面分割);3)后处理优化(聚类滤波+球形搜索扩展)。系统通过距离阈值和RANSAC算法识别潜在坑洞,利用密度聚类和半径搜索优化边界完整性。该方法具有分层处理、双重验证、噪声鲁棒等特点,支持中间结果追溯,实现了从原始点云到完整坑洞轮廓的自动化提取。

2025-07-31 23:00:33 56

原创 【C++PCL】模型离群点移除算法

点云模型外点移除算法详解 本文介绍了PCL中的ModelOutlierRemoval算法,通过数学模型拟合去除离群点。支持平面、球体、圆柱等多种几何模型,核心步骤包括模型拟合、距离计算和阈值过滤。文章详细解析了算法原理、数学公式、代码实现(含可视化)和关键参数调试方法,并提供了不同模型的距离计算方式。调试策略包括自动阈值测试和多模型对比,最后给出模型选择原则和注意事项。

2025-07-29 22:45:36 38

原创 零件边界线提取处理原理详解

该程序提出了一种高效的点云边界提取方法,通过三阶段处理流程实现零件几何特征的精确提取。首先采用RANSAC算法进行坐标系标准化,包括主平面检测、点云分割和双重旋转对齐。接着使用凹包算法和RANSAC直线拟合提取底面边界。最后通过多方向密度切片分析(Z向100片、X向50片),自动选择高密度切片进行边界提取和直线拟合。算法具有鲁棒性强、处理效率高(支持OpenMP并行计算)和参数可配置等特点,能有效提取零件的几何边界特征,为后续质量检测提供基础。实验结果显示该方法能准确提取零件的多方向边界线。

2025-07-29 22:08:51 197

原创 【C++PCL】耳切三角剖分

本文介绍了基于PCL实现的耳切三角剖分算法。作者作为点云处理专家,详细解析了耳切算法原理,包括简单多边形定义、凸顶点判断和耳朵裁剪过程。文章提供了完整的C++实现代码,展示如何从VTK文件加载网格、执行三角剖分并可视化对比结果。重点说明了算法特点:O(n²)时间复杂度、带孔多边形处理能力,以及PCL实现中的优化细节。同时给出了预处理建议和注意事项,如输入网格闭合性要求、非流形网格限制等。

2025-07-27 16:32:45 32

原创 基于点云边界提取与B样条拟合的二维轮廓重建的思路与原理

本文介绍了一种三维点云到二维参数化边界曲线的转换系统。该系统通过四步流程实现:首先将点云投影至XY平面,接着用凹包算法提取边界;然后对边界点进行逆时针排序,最后通过B样条曲线拟合生成光滑轮廓。系统采用Blossom算法实现B样条拟合,具有局部支持性和强凸包性等特性,并优化了边界处理和计算性能。该系统可应用于逆向工程、医学成像等领域,实现从散乱点云到精确边界曲线的转换,其模块化设计便于扩展高阶曲面重建功能。

2025-07-27 16:09:01 168

原创 寻找圆柱缺陷

该程序实现了工业零件表面缺陷的自动化检测与量化分析,采用圆柱拟合和点云处理技术。系统通过最小二乘法和RANSAC算法进行圆柱参数拟合,利用坐标变换将轴线对齐Z轴。缺陷检测模块采用KDTree加速差异点查找,并通过欧式聚类分割不同缺陷区域,计算各区域的三维尺寸。处理流程包括点云加载、圆柱拟合、缺陷检测、聚类分割和尺寸计算,最终输出可视化结果和详细尺寸报告。关键技术亮点包括双重拟合策略、多维尺寸分析和坐标归一化处理,支持PCD格式数据存储和TXT格式报告输出。

2025-07-26 14:17:47 58

原创 箱体点云分割

本文提出了一种完整的点云处理流程,用于检测和分割与指定方向对齐的平面结构及其关联点云。算法主要包括:点云旋转预处理、区域生长分割、平面筛选、点云回溯、投影与边界提取、圆柱体搜索等步骤。通过法线估计和RANSAC平面拟合检测水平/垂直平面,利用球半径搜索和凹包边界提取获取平面连接结构,最终通过圆柱体搜索构建完整三维物体点云。该方法实现了从原始点云到独立物体分割的全流程处理,并通过颜色标记和坐标系还原增强可视化效果。实验结果表明,该流程能有效检测和分割与指定方向对齐的平面结构及其关联点云。

2025-07-26 00:14:35 44

原创 曲面点云填充加切片

该点云处理系统通过四个核心步骤实现三维物体分层分析:首先使用RANSAC算法检测基准平面,然后通过罗德里格斯旋转将平面对齐至XOY坐标系,接着沿法线方向生成等距平行切片,最后采用KD树球形搜索提取切片点云并随机着色。系统结合几何变换、邻域搜索和颜色映射技术,支持工业检测、地质勘探等应用场景的空间分层分析,可实现物体截面特征研究、产品厚度检测等功能。关键技术包括RANSAC平面检测优化、四维变换矩阵处理坐标系对齐、等间距分层切片策略以及球形搜索半径优化等。

2025-07-26 00:13:58 46

原创 自动分割和测量混凝土钢筋的思路与原理

该文提出了一种基于PCL库的点云处理系统,用于自动测量混凝土结构中钢筋的几何参数。系统采用多阶段处理流程:首先通过RANSAC算法提取地面并旋转对齐;接着使用区域生长算法分割混凝土结构;然后采用RANSAC线检测识别钢筋,按方向分类;最后通过圆柱拟合和坐标差计算获得钢筋间距、直径和高度差等参数。文章详细介绍了各模块的核心算法,包括地面检测、坐标变换、钢筋识别和几何计算等关键步骤,并分析了主要参数的敏感性。系统通过分层处理和坐标变换确保测量精度,为混凝土结构的无损检测提供了自动化解决方案。

2025-07-25 14:01:42 373

原创 【C++PCL】点云添加高斯噪声

本文介绍了点云处理中高斯噪声的原理与实现方法。高斯噪声是一种服从正态分布的噪声模型,常用于模拟传感器误差和环境干扰。文章详细讲解了高斯噪声的数学模型,重点分析了标准差(σ)和均值(μ)等关键参数对噪声强度的影响,并区分了各向同性与各向同性噪声的特性。同时提供了基于PCL库的C++实现代码,展示了如何为点云添加不同强度的高斯噪声,包含点云分辨率计算、噪声添加和可视化等功能模块。代码中特别说明了如何通过调整标准差参数控制噪声强度,并提供了低、中、高三种噪声级别的实现示例。

2025-07-24 21:40:48 33

原创 提取边界线的思路与原理

本文提出一种多阶段点云边界提取方法,通过3D→2D→3D的维度转换实现高效处理。首先采用半径滤波去除离群点,将点云投影至二维平面后,运用两级Alpha-Shape算法(α=0.2/1.9)分别提取细节和平滑边界,结合欧式聚类筛选主轮廓。最后通过KD树匹配和体素滤波还原三维边界并去重。实验表明,该方法在保持亚毫米精度的同时,能有效处理建筑等结构化场景,参数设置合理:半径滤波(0.5m/20点)、聚类阈值0.6m、体素尺寸1mm。流程涵盖降噪→投影→边界优化→三维还原全链路,兼顾细节保留与抗噪能力。

2025-07-24 21:26:33 96

原创 C++ PCL点云处理实战专栏

工业级点云处理技术学习资源,涵盖电力、建筑、隧道等领域的实战案例。内容分为三阶段:代码原理(算法认知)、动态库(项目验证)和完整代码(定制开发)。

2025-07-23 22:56:02 519

原创 【C++PCL】OBB包围盒

本文介绍了点云OBB(定向包围盒)的计算原理与实现方法。OBB通过主成分分析确定最小体积长方体方向,核心步骤包括协方差矩阵计算、PCA分解、坐标变换及极值计算。文章提供了基于PCL库的完整C++实现代码,涵盖点云加载、预处理(离群点移除)、OBB计算、结果可视化等功能模块,并详细注释了关键参数(如离群点滤波的邻近点数、标准差阈值)。代码通过旋转矩阵和特征值获取OBB的几何属性,支持三维可视化展示。该实现适用于点云物体检测、尺寸测量等应用场景.

2025-07-21 14:27:50 34

原创 【C++PCL】条件滤波器

本文介绍了PCL中的条件滤波器(Conditional Removal)原理与应用。该滤波器通过自定义逻辑条件(如坐标、颜色等属性)实现点云过滤,支持多条件组合(AND/OR)和多种比较操作符。文章包含完整的C++实现代码,展示了如何设置高度和颜色条件进行点云筛选,并提供了参数调试建议(如条件顺序优化、阈值调整策略)以及注意事项(字段名称准确性、浮点数比较问题等)。

2025-07-17 22:27:14 136

原创 【C++PCL】索引滤波器

【摘要】本文由迅卓科技分享点云索引提取技术,详解pcl::ExtractIndices类的原理与应用。通过平面分割案例展示如何提取内点(目标平面)和外点(其他物体),包含完整的C++实现代码。重点解析setNegative、setKeepOrganized等关键参数的调试方法,并提供索引有效性检查、数据结构转换等实用技巧。

2025-07-17 22:02:49 42

原创 【C++PCL】AABB包围盒

本文介绍了AABB包围盒在点云处理中的应用,包括其原理特性(轴对齐、最小-最大表示法)和计算步骤。通过PCL库实现了AABB包围盒计算,输出了最小/最大点坐标、包围盒尺寸和体积等结果,并提供了可视化效果展示。文章给出了处理无效点和空点云的注意事项,建议对大规模点云使用下采样和统计滤波优化计算。

2025-07-16 21:14:00 41

原创 【C++PCL】主成分分析(PCA)原理及使用

本文介绍了基于PCA的点云主方向计算方法,包含数学原理、代码实现和关键参数说明。首先通过协方差矩阵特征分解获取点云的三维特征向量,然后使用PCL库实现PCA计算并可视化展示主方向。文章提供了完整的C++源码,详细说明了数据预处理、协方差矩阵计算等核心步骤,并给出了数值稳定性处理、特征向量方向统一等实用建议。

2025-07-16 21:00:53 158

原创 【C++PCL】基于MLS的法向量求解

【摘要】本文介绍了移动最小二乘法(MLS)在点云处理中的应用,详细讲解了MLS的数学原理和实现步骤,包括局部参考平面建立、多项式拟合、参数求解等关键过程。文章通过PCL库代码展示了MLS点云平滑和法向量计算的实际应用,并对比了处理前后的效果差异。

2025-07-15 23:28:42 483

原创 【C++PCL】点云的高斯曲率和平均曲率

本文介绍了点云曲率计算的原理与实现方法。作者迅卓科技分享了基于PCL库的点云曲率计算流程,包括法线估计、协方差分析、特征值分解等步骤,详细解析了高斯曲率和平均曲率的数学定义及几何意义。文章提供了完整的C++实现代码,展示了曲率颜色可视化效果,并包含参数调试说明。代码实现了从点云加载、法线计算到主曲率估计的全流程,最后通过颜色映射直观展示曲率分布。作者欢迎读者在公众号"迅卓科技888"交流学习,指出文章错误或提出改进建议。

2025-07-15 23:13:09 359

原创 【C++PCL】点云的主曲率计算

《点云主曲率计算与参数调试指南》摘要:本文详细介绍PCL中点云主曲率计算原理,包括曲面拟合、曲率求解等步骤。提供完整C++实现代码,支持法向量计算、主曲率估算及可视化功能。重点解析参数调试技巧,如法向量搜索半径、曲率计算邻域范围等关键参数的优化设置。特别强调点云预处理、邻域选择策略和计算效率优化等注意事项,并附有官方文档和经典文献参考。适合点云处理开发者学习使用,公众号提供更多学习资源和技术支持。

2025-07-14 23:10:17 454

原创 【C++PCL】法向量求解基于局部表面拟合

Hoppeetal.(1992)提出了基于局部表面拟合的法向量估计方法,在进行法向量估计时有一个基本假设,即点云表面处处光滑,如此可利用一个平面对某一点的邻域点进行拟合。对于一个空间点p,邻域点搜索时主要有两种方式,一种是选择距离p点最近的k个点,另一种设置一个距离阈值r,所有距离p点距离小于等于r的点被认为是其邻域点。邻域点搜索完成后,p点对应的局部平面P可表示如下:其中,n为拟合平面P的法向量,d为P到坐标原点的距离。

2025-02-18 21:42:20 75

原创 【C++PCL】点云处理MC移动立方体重建

移动立方体重建算法为等值面提取算法。该算法和体重建一样有基于图像和基于点云两种。基于图像的移动立方体算法其原理是将三维数据划分为一组立方体单元,然后通过对每个立方体单元内部的数据进行插值,并利用三角化技术来生成此单元内部的连续三角片。将预处理的图像读取到内存中;按照体元扫描2个切片;确定每个体元的顶点值并标记,通过标记进行体元连接情况归类;通过线性插值计算得到三角面片顶点的确切位置;计算每个体元顶点的单位法线,并将法线插值到三角形面片的每个顶点;输出重建模型。

2025-02-17 22:19:56 84

原创 【C++PCL】点云处理泊松曲面重建

泊松曲面重建(poisson surface reconstruction)算法是一种隐式函数的曲面重建算法,因其是经过最优插值的方法来对模型曲面进行拟合,所以拟合的结果存在误差。其重建过程为:首先输入的数据为具有法向量信息的点云数据ε,假设点云中的点全部附着于曲面M或者曲面M邻近区域,然后根据曲面M的指示函数和梯度两个参数之间的关系,建立泊松方程,根据泊松方程使用Marching Cubes(MC)等值面提取方法,将点云数据转化为曲面模型的表示形式,最终得到一个重建的曲面。1. 定义函数空间。

2025-02-16 16:26:11 171

原创 【C++PCL】点云处理RGB绿色过滤

在三维点云数据处理中,过滤 RGB 颜色信息(如去除绿色成分)可以帮助我们聚焦于感兴趣的部分。三维点云的每个点包含(x, y, z)坐标和 RGB 颜色信息。通过对颜色数据进行筛选,可以忽略特定颜色的信息,比如去除绿色的点以突出其他物体。G(绿色通道)被放大,突出绿色点的特征。R(红色通道)和B(蓝色通道)被减去,抑制非绿色点的影响。结果:通过对每个点的颜色进行计算,如果结果为负或为 0,可以忽略这些点,即去除绿色。

2024-10-20 13:25:40 155

原创 钢筋点云提取

该项目主要是处理采集的钢筋混凝土点云,首先将地面去除,然后按照聚类等方式进行处理,最终实现每根钢筋的分离和分割,以及计算每条钢筋之间的距离和夹角。

2024-08-25 16:25:11 566 5

原创 【C++PCL】点云处理贪婪三角化曲面重建

原理是将三维点云投影到某一平面上,然后对平面上的点云做平面区域的三角化,从而获取各个点之间的链接关系,其中平面区域三角化使用三角剖分算法(Delaunay),选取一个三角形作为初始曲面,通过对曲面的不断扩张从而形成一个完整的三角网格,根据投影点间的链接关系确定三维点云之间的拓扑关系,所获的空间三角网格即为曲面重建后的曲面模型,见图1。

2024-08-25 15:39:15 425

原创 【C++PCL】点云处理a-shape曲面重建

Alpha形状概念:Alpha形状是由Edelsbrunner等人在1983年提出的,是Delaunay三角化的一种推广。它通过控制一个参数α来生成一系列的形状,从而捕捉点云的几何特征,步骤如下:首先,对点云进行Delaunay三角剖分。Delaunay三角剖分是一个三角网格,它满足“空圆”性质,即每个三角形的外接圆中不包含其他点。通过设置参数α,过滤掉Delaunay三角剖分中的某些边和三角形,只保留那些边长和三角形边长平方和小于α的部分。这个过程生成了一个子集,称为Alpha形状。

2024-07-22 21:03:05 281

原创 【C++PCL】点云处理误差RMSE值计算(XYZ)

见RMSE解释。

2024-07-07 10:07:34 247

原创 【C++PCL】点云处理误差RMSE值计算

均方根误差定义为:式中,n为对应点对的数量,Xi为配准后对应点之间的欧氏距离,Xi​^​为对应点之间欧氏距离的真值。绝对理想状态下,完全配准后对应点之间的距离为0,因此对应点之间欧氏距离的真值为0。

2024-07-07 10:00:28 301

原创 【C++PCL】点云处理两组点云的最小距离

得到对应关系之后,将对应关系中最小的距离保留下来即为两点云的最小对应距离。

2024-07-06 21:26:42 184

原创 【C++PCL】点云处理误差MSE值计算

由于错误的配准效果点云空间位置相差较大,传统的均方根误差RMSE作为配准精度评定,限制最近点距离阈值会导致配准错误的点被剔除,从而得到较小的RMSE,错误点被剔除得到的RMSE值较小,但是配准效果并不理想。采用配准后点云对应的最近点距离的平方和作为配准效果的评定可以避免这种结果,配准得分指标是通过计算配准后对应点对之间的欧氏距离,再进行求和后除以配准点总数得到的平均距离差值,即为得分。pi为源点云的某一点,qi为目标点云相对于源点云pi的近邻点。

2024-07-06 21:26:19 196

原创 【C++PCL】点云处理点云对应点对的均值标准差

输入的是对应点对列表,:输出的是对应点对之间距离平方的均值和标准差。

2024-07-04 16:55:09 430

原创 【C++PCL】点云处理获取两点云的差异点云

初始化一个用于最近邻搜索的空间定位器(例如kd-tree),以便快速找到目标点云中与源点云点最接近的点。遍历源点云遍历源点云中的每个点,对于每个点,寻找目标点云中距离最近的点(最近邻)。最近邻搜索对于源点云中的每个点,使用空间定位器在目标点云中搜索最近邻点,并计算它们之间的距离。距离比较将计算出的最近邻距离与给定的距离阈值进行比较。如果距离大于阈值,说明这个源点云点在目标点云中没有找到足够近的对应点。存储不匹配点如果源点云中的点没有在目标点云中找到足够近的对应点,则将这个点存储到一个索引列表中。

2024-07-04 16:54:50 513

原创 【C++PCL】点云处理提取点云非重叠部分

对于每个源点,使用最近邻搜索找到其在目标点云中的最近邻点。检查距离是否在允许的最大距离阈值内。如果距离超出阈值,则跳过该点。对于找到的目标点,再在源点云中进行最近邻搜索,验证该目标点的最近邻是否回到原始源点。只有在双向验证通过的情况下,才认为这对点是有效的对应点对。

2024-06-30 14:04:43 152

原创 【C++PCL】点云处理提取点云重叠部分

对应关系估计器的主要任务是找到两个点云之间的匹配点对。最近邻搜索:对于源点云中的每个点,找到目标点云中距离最近的点。这通常使用KD树或其他高效的最近邻搜索算法来实现。互惠对应关系:不仅要找到源点云中的每个点在目标点云中的最近邻点,还要找到目标点云中的每个点在源点云中的最近邻点。如果这两个点互为最近邻点,则认为它们是一个有效的对应点对。距离过滤:应用距离阈值过滤,排除那些距离超过设定值的点对。这可以避免将不相关或噪声点对纳入考虑。

2024-06-30 14:04:20 297

原创 【C++PCL】点云处理八叉树混合邻域半径搜索

p_q (这是查询点的参数,即要查找邻居的起始点。radius (这是用来确定邻居点范围的球体的半径。只有距离查询点p_q在这个半径范围内的点会被返回。这是一个输出参数,用于存储找到的邻居点的索引值。函数执行后,这个向量会包含邻居点在数据集中的索引。这是另一个输出参数,用于存储找到的邻居点到查询点p_q的平方距离。平方距离比直接距离更有效地用于计算和比较。

2024-06-29 12:45:55 203

原创 【C++PCL】点云处理八叉树半径搜索

p_q (这是查询点的参数,即要查找邻居的起始点。radius (这是用来确定邻居点范围的球体的半径。只有距离查询点p_q在这个半径范围内的点会被返回。这是一个输出参数,用于存储找到的邻居点的索引值。函数执行后,这个向量会包含邻居点在数据集中的索引。这是另一个输出参数,用于存储找到的邻居点到查询点p_q的平方距离。平方距离比直接距离更有效地用于计算和比较。

2024-06-29 12:45:31 144

原创 【C++PCL】点云处理八叉树邻域搜索

int k,含义:给定的查询点,即需要寻找最近邻的点。解释:这是一个常量引用,指向查询点p_q。该查询点是在点云中寻找k个最近邻点的基础。int k含义:要搜索的邻居点的数量。解释:这是一个整数值,表示算法需要返回的最近邻点的个数,即k值。含义:邻居点的结果索引。解释:这是一个整数向量,存储k个最近邻点在点云中的索引。在调用函数前,这个向量必须被调整大小(resize)以容纳k个元素。含义:邻居点到查询点的平方距离。解释:这是一个浮点数向量,存储k个最近邻点到查询点的平方距离。

2024-06-28 10:58:13 283

原创 【C++PCL】点云处理八叉树原理

与KD树一样,八叉树(octree)也是一种高效的组织点云数据的办法,它可以从原始点云数据建树状数据结构。八叉树可以有效实现对点云的空间分区、下采样、搜索操作(如近邻搜索)等。每个八叉树要么有8个节点,要么没有节点。根节点是一个包含所有点云数据的立方体包围盒八叉树结构是由 Hunter博士于1978年首次提出的一种数据模型。八叉树结构通过对三维空间的几何实体进行体元剖分,每个体元具有相同的时间和空间复杂度。

2024-06-28 10:57:50 240

原创 【C++PCL】点云处理点云密度计算优化

目前,计算点云的密度方式为选择某区域内的点集合,记为Q;然后计算任意一点到最近邻域点距离,记为di;将Q内的点云的所有点对应的 相加取平均值,即优化版本的K最近邻点搜索的时候加入了距离约束条件,避免了空洞区域对整体密度的影响,鲁棒性更强。但是该方式计算点云密度时仍然容易产生较大的误差,如图所示,由于绿色点的影响,会导致计算的点云密度结果偏小。

2024-06-27 11:37:09 148

RoadScanProDll(公路坑槽检测分析)-动态库(不含源码)

这段代码实现了一个基于点云处理的坑洞检测系统,通过体素降采样(voxel)和移动最小二乘平滑(MLS)预处理点云数据,再通过差异分析(findDif)和球形搜索(sphericalSearch)提取坑洞区域,最后聚类过滤噪声,其意义在于自动化、高效地识别道路缺陷,为道路维护提供精准数据支持。

2025-07-31

RoadScanPro(公路坑槽检测分析)-源码

这段代码实现了一个基于点云处理的坑洞检测系统,通过体素降采样(voxel)和移动最小二乘平滑(MLS)预处理点云数据,再通过差异分析(findDif)和球形搜索(sphericalSearch)提取坑洞区域,最后聚类过滤噪声,其意义在于自动化、高效地识别道路缺陷,为道路维护提供精准数据支持。

2025-07-31

ExtractBoundaryDll(零件边界线提取)-动态库(不含源码)

该程序通过点云处理技术提取零件的几何边界线特征,首先利用RANSAC算法检测最大平面作为底面,通过两次坐标系旋转(先使底面平行于XOY平面,再使边界线平行于X轴)实现坐标系标准化;接着采用多方向切片策略(Z轴0.01厚度切片约100层,X轴0.02厚度切片约50层),按点云密度筛选出关键切片(Z向取前4个,X向取前1个);最后对每个切片提取凹包边界,并通过迭代式RANSAC直线拟合提取多条边界线,结果以随机着色方式保存,形成完整的零件边界特征表达。

2025-07-29

ExtractBoundary(零件边界线提取)-源码

该程序通过点云处理技术提取零件的几何边界线特征,首先利用RANSAC算法检测最大平面作为底面,通过两次坐标系旋转(先使底面平行于XOY平面,再使边界线平行于X轴)实现坐标系标准化;接着采用多方向切片策略(Z轴0.01厚度切片约100层,X轴0.02厚度切片约50层),按点云密度筛选出关键切片(Z向取前4个,X向取前1个);最后对每个切片提取凹包边界,并通过迭代式RANSAC直线拟合提取多条边界线,结果以随机着色方式保存,形成完整的零件边界特征表达。

2025-07-29

ProFindBound(基于点云边界提取与B样条拟合的二维轮廓重建)-源码

该系统首先对输入的三维点云进行预处理,通过投影操作将点云降维至XY平面并执行凹包边界提取,获得物体的轮廓边界点。接着采用K近邻搜索策略对这些边界点进行逆时针排序,确保点集的空间连续性。然后利用B样条曲线拟合技术(基于Blossom算法),通过设置开放均匀节点矢量和密集参数采样(步长0.00001),将排序后的边界点转化为光滑闭合曲线。最终通过PCL可视化模块,以红色多边形展示拟合曲线,同时输出边界点云和曲线坐标数据,实现从原始点云到参数化边界曲线的完整重建流程。

2025-07-27

ProFindBoundDll(基于点云边界提取与B样条拟合的二维轮廓重建)-动态库(不含源码)

该系统首先对输入的三维点云进行预处理,通过投影操作将点云降维至XY平面并执行凹包边界提取,获得物体的轮廓边界点。接着采用K近邻搜索策略对这些边界点进行逆时针排序,确保点集的空间连续性。然后利用B样条曲线拟合技术(基于Blossom算法),通过设置开放均匀节点矢量和密集参数采样(步长0.00001),将排序后的边界点转化为光滑闭合曲线。最终通过PCL可视化模块,以红色多边形展示拟合曲线,同时输出边界点云和曲线坐标数据,实现从原始点云到参数化边界曲线的完整重建流程。

2025-07-27

findDefect(求圆柱缺陷)-源码

该点云处理系统首先通过圆柱拟合算法(cylinderfitting)对输入点云进行精确建模,利用最小二乘法和RANSAC算法确定圆柱的轴线方向、半径和长度参数;然后通过点云差异检测(findDif)对比原始点云与拟合圆柱模型,提取表面缺陷点云;接着采用欧式聚类(PEuroFliter)将缺陷区域分割为独立子集,每个子集代表一个特定缺陷;最后通过坐标变换(PRotateToXOY)将缺陷点云旋转至标准平面,结合切片分析(PCutStr)和三维尺寸计算(computerLength)量化缺陷的长度、深度和宽度等关键尺寸参数,并输出可视化结果和详细的尺寸报告。

2025-07-26

findDefectDll(圆柱缺陷提取)-动态库(不含源码)

该点云处理系统首先通过圆柱拟合算法(cylinderfitting)对输入点云进行精确建模,利用最小二乘法和RANSAC算法确定圆柱的轴线方向、半径和长度参数;然后通过点云差异检测(findDif)对比原始点云与拟合圆柱模型,提取表面缺陷点云;接着采用欧式聚类(PEuroFliter)将缺陷区域分割为独立子集,每个子集代表一个特定缺陷;最后通过坐标变换(PRotateToXOY)将缺陷点云旋转至标准平面,结合切片分析(PCutStr)和三维尺寸计算(computerLength)量化缺陷的长度、深度和宽度等关键尺寸参数,并输出可视化结果和详细的尺寸报告。

2025-07-26

ConcreteSegTest(混凝土钢筋分割)-源码

这段代码实现了一个基于PCL库的点云处理系统,主要用于分析混凝土结构中的钢筋参数。系统首先通过RANSAC算法提取地面并旋转对齐,接着使用区域生长和分层处理分割混凝土结构,然后通过线检测识别钢筋并分类方向,最后计算钢筋间距、直径和高度差等几何参数。整个过程结合了多种点云处理算法,包括法线估计、坐标变换和圆柱拟合,最终输出可视化结果和测量数据,适用于建筑结构的自动化检测与分析。

2025-07-24

ExtracRoadLine(提取道路线边界)-源码

这段代码实现了一个多步骤的点云边界线提取流程:首先通过半径滤波去除离群噪点(0.5m内少于20个邻居的点),然后将点云投影到XY平面实现3D到2D的降维;接着进行两阶段Alpha-Shape边界提取——首次用α=0.2提取细节边界,再通过欧式聚类(距离阈值0.6m)筛选主边界簇,最后用α=1.9生成平滑轮廓;最终通过KD树半径搜索(0.001m)将2D边界点映射回原始3D点云,并采用体素滤波(1mm³)去除重复点,得到精确的三维边界线。整个过程通过维度转换和分级优化,在保留特征细节的同时确保了边界线的连续性和抗噪性。

2025-07-23

ExtracRoadLineDll(提取道路线边界)-动态库(不含源码)

动态库实现了一个多步骤的点云边界线提取流程:首先通过半径滤波去除离群噪点(0.5m内少于20个邻居的点),然后将点云投影到XY平面实现3D到2D的降维;接着进行两阶段Alpha-Shape边界提取——首次用α=0.2提取细节边界,再通过欧式聚类(距离阈值0.6m)筛选主边界簇,最后用α=1.9生成平滑轮廓;最终通过KD树半径搜索(0.001m)将2D边界点映射回原始3D点云,并采用体素滤波(1mm³)去除重复点,得到精确的三维边界线。整个过程通过维度转换和分级优化,在保留特征细节的同时确保了边界线的连续性和抗噪性。

2025-07-23

ConcreteSegTestDll(混凝土钢筋分割)-动态库(不含源码)

这段代码实现了一个基于PCL库的点云处理系统,主要用于分析混凝土结构中的钢筋参数。系统首先通过RANSAC算法提取地面并旋转对齐,接着使用区域生长和分层处理分割混凝土结构,然后通过线检测识别钢筋并分类方向,最后计算钢筋间距、直径和高度差等几何参数。整个过程结合了多种点云处理算法,包括法线估计、坐标变换和圆柱拟合,最终输出可视化结果和测量数据,适用于建筑结构的自动化检测与分析。

2025-07-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除