YOLO:同时在图片预测多个边界框,并分类。
以上是YOLO的检测流程
相较其他网络YOLO的优点:
1.速度快:基础网络有45fps,fast网络模型可达150fps
2.mAP比其他实时检测网络要高一倍
3.YOLO可以很好的避免背景错误,产生false positives:
能对整张图片同时进行预测,能利用图片上下文信息避免对背景的误识别
4.YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
该系统将图片分成S x S个格子,每个栅格负责检测中心落在该栅格中的物体
每个格子预测B个bounding boxes,以及这些bounding boxes的confidence scores(置信度)
这个 confidence scores反映了模型对于这个栅格的预测:该栅格是否含有物体,以及这个box的坐标预测的有多准。
公式定义如下: