文献阅读:Noise-resistant Deep Metric Learning with Ranking-based Instance Selection

文献阅读:Noise-resistant Deep Metric Learning with Ranking-based Instance Selection


Abstract

真实世界数据中有噪声标签的存在会对深度学习模型的性能产生负面影响。
在本文中,提出了一种用于deep metric learning (DML)的抗噪声训练技术,称之为基于概率排序的带记忆实例选择(PRISM)。
PRISM使用由几个先前版本的神经网络提取的图像特征的平均相似度来识别小批量中的噪声数据。
DML的目标是学习距离度量,该距离度量基于预定义的相似性概念,将相似的数据点对映射在一起,将不同的数据点点对映射到很远的地方。

PRISM根据数据点和其他数据点之间的相似性,使用在最近几次训练迭代中提取的特征,计算标签干净的概率。这可以被视为对数据标签的后验概率建模。对于具有高概率的数据点,我们提取其特征并将其插入到记忆块中,用于后续模型更新。
此外,还开发了一种平滑top-R(sTRM)技巧来调整噪声数据识别的阈值,以及一种在概率计算中用类中心替换单个数据点的加速技术。


The PRISM Approach

PRISM采用了在线数据过滤方法。在每次训练迭代中,使用在过去几次迭代中提取的特征来过滤出一部分训练数据。其余的被认为是干净的,添加到记忆块中,并用于更新度量。
DML的目的是学习卷积神经网络f(·),该网络为图像xi提取特征向量,使得f(𝑥_𝑖)和f(𝑥_𝑗)之间的余弦相似性S(f(𝑥_𝑖),f(𝑥_𝑗))在𝑦_𝑖 = 𝑦_𝑗时高,在𝑦_𝑖 ≠ 𝑦_𝑗下低:

在这里插入图片描述

将小批量表示为𝐵={( 𝑥_0 ,𝑦_0 ),…,( 𝑥_𝐵 , 𝑦_𝐵 )}。
如果𝑦_𝑖 = 𝑦_𝑗 ,一对特征(f(𝑥_𝑖),f(𝑥_𝑗))称为正对,如果𝑦_𝑖 ≠ 𝑦_𝑗称为负对。
为了识别有噪声的标签,维护一个先进先出的记忆块M,M ={( 𝑣_0 , 𝑦_0 ),…,( 𝑣_𝑀 , 𝑦_𝑀 )},以存储样本的历史特征。
在步骤中,将干净数据从噪声数据中分离出来,将干净数据𝑥_𝑖的当前特征𝑣_i附加到记忆块中。如果超过了最大存储体容量,最旧的功能将从记忆块中退出队列,以便始终跟踪最新的功能。

将𝑥_𝑖的特征与记忆块的内容进行比较,以确定其标签𝑦_𝑖是否有噪声。如果𝑦_𝑖是一个干净的标签,那么𝑥_𝑖和记忆块中具有相同类标签的其他样本之间的相似性应该比其与其他类样本的相似性大。
将( 𝑥_𝑖 , 𝑦_𝑖 )作为干净数据点的概率𝑃_𝑐𝑙𝑒𝑎𝑛(i)定义如下:

在这里插入图片描述

𝑀_𝑘是记忆块中k类中的样本数。 T( 𝑥_𝑖 ,k)是𝑥_𝑖和类k中所有存储特征𝑣_𝑗之间的平均相似性。

将𝑥_𝑖的特征当𝑃_𝑐𝑙𝑒𝑎𝑛(i)低于阈值m时,将( 𝑥_𝑖 , 𝑦_𝑖 )视为噪声数据样本。提出了两种确定阈值m的方法:top-R方法(TRM)和平滑top-R法(sTRM)。
TRM下,定义了一个滤波率(即估计噪声率)R。在每个小批次中,如果𝑃_𝑐𝑙𝑒𝑎𝑛(i)在当前小批次B中所有样本的最小R%内,将( 𝑥_𝑖 , 𝑦_𝑖 )视为噪声。
sTRM跟踪最后τ批次中𝑃_𝑐𝑙𝑒𝑎𝑛(i)值的R%的平均值。形式上,假设𝑄_j是第j个小批量中𝑃_𝑐𝑙𝑒𝑎𝑛(i)值的R%,阈值m定义为:

在这里插入图片描述

优化

要创建平衡的小批量:
首先对P个唯一类进行采样,并对每个选定类的K个图像进行采样,在每个小批量中生成PK个图像。
对于第k个聚类,用该类的平均特征向量𝑤_𝑘替换其𝑀_𝑘数据样本:
在这里插入图片描述
要将等式(5)插入等式(2), 𝑃_𝑐𝑙𝑒𝑎𝑛(i)可以表示为:
在这里插入图片描述

算法:
在这里插入图片描述
在这里插入图片描述

损失函数

传统的基于对的对比损失函数计算小批量B中所有数据样本对之间的相似性。损失函数鼓励f(·)在同一类样本之间分配小距离,在不同类样本之间指定大距离:
在这里插入图片描述
使用以先进先出方式存储先前小批量中数据样本特征的记忆块M,可以在损失中使用更多的正和负对,这可以减少梯度估计中的方差,记忆块损失可以写为:
在这里插入图片描述
memory-based contrastive loss(MCL)为二者之和。
使用PRISM的另一种损失是Soft Triple损失,一种基于proxy的损失函数。损失计算为小批量数据和所有类别之间的相似性:

在这里插入图片描述

𝑃_j^ℎ是类j的第h个proxy(proxy是与图像特征具有相同大小的向量)


Experimental Evaluation

在这里插入图片描述
噪音在数据集中比例越大,提升效果越明显

在这里插入图片描述
将PRISM合并到MCL中可提高所得模型的性能。PRISM的优点在50%的噪声率下尤其明显。
在这里插入图片描述
在这两个数据集中,使用带PRISM的Soft Triple实现了最佳性能。
在这里插入图片描述
在SOP数据集和10%对称标签噪声上,使用和不使用PRISM进行5000次迭代所需的训练时间。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值