服务器跑pytorch代码,GPU显存正常但是利用率为0?

文章探讨了num_workers设置过高导致GPU利用率下降的问题,分析了CPU瓶颈、IO瓶颈和系统资源竞争的影响。建议调整num_workers至合理值,并考虑关闭pin_memory以进一步提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


根本问题:num_workers=32,可能是过高
解决方法:将num_workers调整至8,一切恢复正常


导致 GPU 利用率为 0 的情况可能有几个原因:

CPU 瓶颈:设置过高的 num_workers 可能导致 CPU 资源过度竞争,尤其是在数据加载和预处理过程中。这可能会使 CPU 无法及时处理数据并将其发送到 GPU,从而造成 GPU 空闲等待数据,导致 GPU 利用率为 0。

IO 瓶颈:过多的 num_workers 也可能导致 IO 资源的竞争,尤其是在从磁盘读取数据时。如果系统 IO 能力有限,设置过多的 num_workers 可能会导致数据读取速度受限,进而影响到 GPU 的数据获取速度。

系统资源竞争:除了 CPU 和 IO,过高的 num_workers 还可能导致系统内存和其他资源的竞争,从而影响整体系统的稳定性和性能


更新

只改变num_workers问题没有解决,还需要将pin_memory设置为False

### 提高PyTorch程序的GPU利用率的方法 在处理PyTorch中的GPU利用率较低的问题时,可以从多个方面入手优化。以下是几个关键策略: #### 1. 调整数据加载方式 如果数据加载成为瓶颈,则可能会导致GPU闲置时间增加。因此,建议使用`DataLoader`并启用多线程数据预取功能以加速数据传输过程[^1]。 ```python train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=64, shuffle=True, num_workers=8, # 使用更多CPU核心来加快数据准备速度 pin_memory=True # 将数据复制到页锁定内存中,从而更快地传递给GPU ) ``` #### 2. 设置可见的GPU设备数量 当需要控制具体哪些GPU被用于计算任务时,可以通过环境变量`CUDA_VISIBLE_DEVICES`指定可用的GPU列表。这有助于合理分配硬件资源,并减少不必要的竞争[^2]。 ```python import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,3' # 只允许访问第0号和第3号GPU ``` #### 3. 手动管理显存缓存 为了防止因显存不足而导致性能下降,在适当时候调用`torch.cuda.empty_cache()`函数清理未使用的缓存空间是非常必要的措施之一[^3]。 ```python if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') model.to(device) for epoch in range(num_epochs): ... del inputs, targets, outputs, loss # 删除不再需要的对象 if torch.cuda.is_available(): torch.cuda.empty_cache() # 清理掉无用的临时张量占用的空间 ``` 通过上述方法的应用,能够有效提升PyTorch应用程序运行期间对于图形处理器的有效利用效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值