基础模板
$$
\begin{aligned}
.....内容.....
\end{aligned}
$$
其中,可以使用‘\\‘表示换行,在需要对齐的地方使用 ‘&’便可实现对齐!
例子
代码
$$
\begin{aligned}
u \cdot n
& =u n^T \\
& = u(A A^{-1})n^T \\
& =(uA)(A^{-1}n^T) \\
& =(uA)((A^{-1}n^T)^T)^T \\
& =(uA)(n(A^{-1})^T)^T \\
& =uA \cdot n(A^{-1})^T \\
& =uA\cdot nB \\
& =0
\end{aligned}
$$
效果
u
⋅
n
=
u
n
T
=
u
(
A
A
−
1
)
n
T
=
(
u
A
)
(
A
−
1
n
T
)
=
(
u
A
)
(
(
A
−
1
n
T
)
T
)
T
=
(
u
A
)
(
n
(
A
−
1
)
T
)
T
=
u
A
⋅
n
(
A
−
1
)
T
=
u
A
⋅
n
B
=
0
\begin{aligned} u \cdot n & =u n^T \\ & = u(A A^{-1})n^T \\ & =(uA)(A^{-1}n^T) \\ & =(uA)((A^{-1}n^T)^T)^T \\ & =(uA)(n(A^{-1})^T)^T \\ & =uA \cdot n(A^{-1})^T \\ & =uA\cdot nB \\ & =0 \end{aligned}
u⋅n=unT=u(AA−1)nT=(uA)(A−1nT)=(uA)((A−1nT)T)T=(uA)(n(A−1)T)T=uA⋅n(A−1)T=uA⋅nB=0