问题背景概述:
M公司在20座城市拥有门店,销售A、B、C三种产品。现有2014年1月至2016年12月(共计三年,36个月)以来,每个城市每月每产品的销量数据,意在预测2017年度每城市每月每产品的销量。
解决方案:
本题拟对城市-产品分组建模,对20个城市-3种产品共建立60个时间序列模型。
读入数据并使用匿名函数转换时间变量:
data = read_csv("sales_data.csv",encoding= "gbk")
data["month"] = data["month"].apply(lambda x:datetime.datetime.strptime(x,'%Y-%m'))
data["month"]是dataframe里的一列,是series类型,如果想对其中每一个值进行操作,需要遍历读取。此处使用的方法是apply(lambda函数)。
分组:
grouped = data.groupby(["city","p