电商销量预测模型(1)——数据探索

该文介绍了一个利用时间序列模型预测M公司不同城市、不同产品销量的问题。通过对历史销售数据进行处理,创建了60个时间序列模型,并发现各时间序列存在季节性但非平稳。文中提到,尽管销量年年相似,但每个序列都不平稳,预示着需要进行季节性调整或其他预处理。后续将选取特定城市和产品进行建模分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题背景概述:

M公司在20座城市拥有门店,销售A、B、C三种产品。现有2014年1月至2016年12月(共计三年,36个月)以来,每个城市每月每产品的销量数据,意在预测2017年度每城市每月每产品的销量。

解决方案:

本题拟对城市-产品分组建模,对20个城市-3种产品共建立60个时间序列模型。

读入数据并使用匿名函数转换时间变量:

data = read_csv("sales_data.csv",encoding= "gbk")
data["month"] = data["month"].apply(lambda x:datetime.datetime.strptime(x,'%Y-%m'))

data["month"]是dataframe里的一列,是series类型,如果想对其中每一个值进行操作,需要遍历读取。此处使用的方法是apply(lambda函数)。

分组:

grouped = data.groupby(["city","p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值