3.12 映射的乘法,可逆映射
定义 1. 映射的乘积:设
f
:
A
→
B
f:A \rightarrow B
f:A→B,
g
:
B
→
C
g:B \rightarrow C
g:B→C 为两个映射,称
(
g
⋅
f
)
(
a
)
:
=
g
(
f
(
a
)
)
,
∀
a
∈
A
(g \cdot f)(a):=g(f(a)),\forall a \in A
(g⋅f)(a):=g(f(a)),∀a∈A
为映射
g
g
g 与
f
f
f 的 乘积 或 合成。

容易验证,映射的乘积满足结合律,但不满足交换律。
h
⋅
(
g
⋅
f
)
=
(
h
⋅
g
)
⋅
f
h \cdot (g \cdot f) = (h \cdot g) \cdot f
h⋅(g⋅f)=(h⋅g)⋅f
定义 2. 恒等映射:若映射
f
:
A
→
A
,
a
↦
a
f:A \rightarrow A,a \mapsto a
f:A→A,a↦a, 则称
f
f
f 为
A
A
A 上的 恒等映射,记作:
1
A
1_{A}
1A。
命题 1:设映射
f
:
A
→
B
f:A \rightarrow B
f:A→B,则
f
⋅
1
A
=
f
f\cdot 1_{A} = f
f⋅1A=f。即:
(
f
⋅
1
A
)
(
a
)
=
f
(
a
)
,
∀
a
∈
A
.
(f\cdot 1_{A})(a) = f(a),\quad \forall a \in A.
(f⋅1A)(a)=f(a),∀a∈A.
类似地,有: 1 B ⋅ f = f 1_{B} \cdot f=f 1B⋅f=f。
定义 3. 可逆映射与逆映射:设映射
f
:
A
→
B
f:A \rightarrow B
f:A→B,若存在映射
g
:
B
→
A
g:B \rightarrow A
g:B→A,使得:
g
⋅
f
=
1
A
,
f
⋅
g
=
1
B
,
g \cdot f = 1_{A},\quad f \cdot g = 1_{B},
g⋅f=1A,f⋅g=1B,
则称
f
f
f 为 可逆映射,
g
g
g 称为
f
f
f 的逆映射。显然,
f
f
f 也是
g
g
g 的逆映射。
可以证明:若映射
f
f
f 是可逆的,则
f
f
f 的逆映射是唯一的。将
f
f
f 的逆映射记作
f
−
1
f^{-1}
f−1,则:
f
−
1
⋅
f
=
1
A
,
f
⋅
f
−
1
=
1
B
.
f^{-1} \cdot f = 1_{A},\quad f \cdot f^{-1} = 1_{B}.
f−1⋅f=1A,f⋅f−1=1B.
下面来探讨:可逆映射与满射、单射以及双射的关系。
定理 1:映射 f : A → B f:A \rightarrow B f:A→B 是可逆映射 ⟺ \Longleftrightarrow ⟺ f f f 是双射。
证明:
(1)必要性 “ ⟹ \Longrightarrow ⟹”:设 f : A → B f:A \rightarrow B f:A→B 是可逆映射,则存在 f f f 的逆映射 f − 1 : B → A f^{-1}:B \rightarrow A f−1:B→A。
先证明
f
f
f 为满射。
∀
b
∈
B
\forall ~ b \in B
∀ b∈B,有
f
−
1
(
b
)
∈
A
f^{-1}(b) \in A
f−1(b)∈A,且有:
f
(
f
−
1
(
b
)
)
=
(
f
⋅
f
−
1
)
(
b
)
=
1
B
(
b
)
=
b
.
f(f^{-1}(b)) = (f \cdot f^{-1})(b) = 1_{B}(b) = b.
f(f−1(b))=(f⋅f−1)(b)=1B(b)=b.
因此,
f
−
1
(
b
)
f^{-1}(b)
f−1(b) 确为
b
b
b 在
f
f
f 下的原像。从而
f
f
f 为满射1。
再证明
f
f
f 为单射。设
a
1
,
a
2
∈
A
a_{1},a_{2} \in A
a1,a2∈A,若
f
(
a
1
)
=
f
(
a
2
)
f(a_{1}) = f(a_{2})
f(a1)=f(a2),则:
f
−
1
(
f
(
a
1
)
)
=
f
−
1
(
f
(
a
2
)
)
⟺
(
f
−
1
⋅
f
)
(
a
1
)
=
(
f
−
1
⋅
f
)
(
a
2
)
⟺
1
A
(
a
1
)
=
1
A
(
a
2
)
⟺
a
1
=
a
2
.
f^{-1} (f(a_{1})) = f^{-1}(f(a_{2})) \Longleftrightarrow (f^{-1} \cdot f)(a_{1}) = (f^{-1} \cdot f)(a_{2}) \Longleftrightarrow 1_{A}(a_{1}) = 1_{A}(a_{2}) \Longleftrightarrow a_{1} = a_{2}.
f−1(f(a1))=f−1(f(a2))⟺(f−1⋅f)(a1)=(f−1⋅f)(a2)⟺1A(a1)=1A(a2)⟺a1=a2.
因此,
f
f
f 是单射。
综上, f f f 为双射。
(2)充分性“ ⟸ \Longleftarrow ⟸”:设 f : A → B f:A \rightarrow B f:A→B 为双射。
由“满性”: ∀ b ∈ B \forall ~ b \in B ∀ b∈B, b b b 在 f f f 下至少存在一个原像。
由“单性”: ∀ b ∈ B \forall ~ b \in B ∀ b∈B,存在唯一的 a ∈ A a \in A a∈A 使得: f ( a ) = b f(a) = b f(a)=b。
如此一来,可以构造一个映射:
g
:
B
→
A
b
↦
a
\begin{aligned} g:B &\rightarrow A \\ b &\mapsto a \end{aligned}
g:Bb→A↦a
并且有:
f
(
g
(
b
)
)
=
(
f
⋅
g
)
(
b
)
=
f
(
a
)
=
b
=
1
B
(
b
)
.
f(g(b)) = (f\cdot g)(b) = f(a) = b = 1_{B}(b).
f(g(b))=(f⋅g)(b)=f(a)=b=1B(b).
即:
f
⋅
g
=
1
B
f \cdot g = 1_{B}
f⋅g=1B。
另外,对于
∀
x
∈
A
\forall ~ x \in A
∀ x∈A,
g
(
f
(
x
)
)
=
(
g
⋅
f
)
(
x
)
=
x
.
g(f(x)) = (g \cdot f)(x) = x.
g(f(x))=(g⋅f)(x)=x.
因此,
g
⋅
f
=
1
A
g \cdot f = 1_{A}
g⋅f=1A。
从而 f f f 是可逆映射。
综上,定理得证。
#
参考:
- 邱维声. 高等代数课程. 哔哩哔哩.
- 邱维声. 高等代数——大学高等代数课程创新教材(上册),北京:清华大学出版社,2010.06.
- 邱维声. 高等代数——大学高等代数课程创新教材(下册),北京:清华大学出版社,2010.10.
满射: f : A → B f:A \rightarrow B f:A→B, ∀ b ∈ B \forall ~ b \in B ∀ b∈B, b b b 在 f f f 下至少有一个原像。 ↩︎