(邱维声)高等代数课程笔记:解线性方程组的矩阵消元法

1.1 解线性方程组的矩阵消元法

\quad 前面说过,高等代数实质上是在解决数个大问题,线性方程组的求解问题 是高等代数中的第一个大问题。本节将介绍线性方程组的一种解法——矩阵消元法。

\quad 对于求解线性方程组,在中学阶段,我们已经学习过 加减消元法 以及 代入消元法。这两种消元法对于求解方程个数较多的方程组来说太过随意(每一步能消元就行,两种方法任意用)。我们期望能够找到一种更加规范、统一的方法,使得可以使用计算机进行处理,这就是本节所要介绍的 矩阵消元法

\quad 结合中学的数学知识,很容易对 例 1 作如下求解。

例 1

{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \begin{cases} x_{1} + 3 x_{2} + x_{3} = 2 \\ 3 x_{1} + 4 x_{2} + 2 x_{3} = 9 \\ - x_{1} - 5 x_{2} + x_{3} = 10 \\ 2 x_{1} + 7 x_{2} + x_{3} = 1 \end{cases} x1+3x2+x3=23x1+4x2+2x3=9x15x2+x3=102x1+7x2+x3=1

解:

\quad 对上述方程组中的方程组依次标序: ①、②、③、④。

\quad 作如下操作: ② + ① × ( − 3 ) ② + ① \times (-3) +×(3) ③ + ① × 1 ③ + ① \times 1 +×1 ④ + ① × ( − 2 ) ④ + ① \times (-2) +×(2) 得:

{ x 1 + 3 x 2 + x 3 = 2 − 5 x 2 − x 3 = 3 − 2 x 2 + 5 x 3 = 12 x 2 − x 3 = − 3 \begin{cases} \begin{aligned} x_{1} + 3 x_{2} + x_{3} &= 2 \\ -5 x_{2} - x_{3} &= 3 \\ -2 x_{2} + 5 x_{3} &= 12 \\ x_{2} - x_{3} &= -3 \end{aligned} \end{cases} x1+3x2+x35x2x32x2+5x3x2x3=2=3=12=3

\quad 为了方便处理,调换 ( ② , ④ ) (②,④) (,) 得:

{ x 1 + 3 x 2 + x 3 = 2 x 2 − x 3 = − 3 − 2 x 2 + 5 x 3 = 12 − 5 x 2 − x 3 = 3 \begin{cases} \begin{aligned} x_{1} + 3 x_{2} + x_{3} &= 2 \\ x_{2} - x_{3} &= -3 \\ -2 x_{2} + 5 x_{3} &= 12 \\ -5 x_{2} - x_{3} &= 3 \end{aligned} \end{cases} x1+3x2+x3x2x32x2+5x35x2x3=2=3=12=3

\quad 作如下操作: ③ + ② × 2 ③ + ② \times 2 +×2 ④ + ② × 5 ④ + ② \times 5 +×5 得:

{ x 1 + 3 x 2 + x 3 = 2 x 2 − x 3 = − 3 3 x 3 = 6 − 6 x 3 = 12 \begin{cases} \begin{aligned} x_{1} + 3 x_{2} + x_{3} &= 2 \\ x_{2} - x_{3} &= -3 \\ 3 x_{3} &= 6 \\ -6 x_{3} &= 12 \end{aligned} \end{cases} x1+3x2+x3x2x33x36x3=2=3=6=12

\quad 作如下操作: ④ + ③ × 2 ④ + ③ \times 2 +×2 ③ × ( 1 3 ) ③ \times (\frac{1}{3}) ×(31) 得:

{ x 1 + 3 x 2 + x 3 = 2 x 2 − x 3 = − 3 x 3 = 2 \begin{cases} \begin{aligned} x_{1} + 3 x_{2} + x_{3} &= 2 \\ x_{2} - x_{3} &= -3 \\ x_{3} &= 2 \end{aligned} \end{cases} x1+3x2+x3x2x3x3=2=3=2

\quad 代入消元,将 x 3 = 2 x_{3} = 2 x3=2 代入 ② 可得 x 2 = − 1 x_{2} = -1 x2=1,再将 x 2 = − 1 , x 3 = 2 x_{2} = -1,x_{3} = 2 x2=1,x3=2 代入 ① 可得 x 1 = 3 x_{1} = 3 x1=3.

\quad 综上,方程组的解为:

{ x 1 = 3 x 2 = − 1 x 3 = 2 \begin{cases} x_{1} = 3 \\ x_{2} = -1 \\ x_{3} = 2 \end{cases} x1=3x2=1x3=2

#

\quad 可以看出,在 例 1 的求解过程中,实质上只是进行了系数的运算,未知量的作用仅为标明次序,并未参与运算。

\quad 下面,我们用 增广矩阵 表示各个过程。

( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) → ② + ① × ( − 3 ) ③ + ① × 1 ④ + ① × ( − 2 ) ( 1 3 1 2 0 − 5 − 1 3 0 − 2 5 12 0 1 − 1 − 3 ) → ( ② , ④ ) ( 1 3 1 2 0 1 − 1 − 3 0 − 2 5 12 0 − 5 − 1 − 3 ) → ③ + ② × 2 ④ + ② × 5 ( 1 3 1 2 0 1 − 1 3 0 0 3 6 0 0 − 6 − 12 ) → ④ + ③ × 2 ( 1 3 1 2 0 1 − 1 3 0 0 3 6 0 0 0 0 ) \left( \begin{matrix} 1& 3& 1& 2\\ 3& 4& 2& 9\\ -1& -5& 4& 10\\ 2& 7& 1& 1\\ \end{matrix} \right) \xrightarrow{\begin{aligned} &②+①\times \left( -3 \right)\\ &③+①\times 1\\ &④+①\times \left( -2 \right)\\ \end{aligned}}\left( \begin{matrix} 1& 3& 1& 2\\ 0& -5& -1& 3\\ 0& -2& 5& 12\\ 0& 1& -1& -3\\ \end{matrix} \right) \xrightarrow{\left( ②,④ \right)}\left( \begin{matrix} 1& 3& 1& 2\\ 0& 1& -1& -3\\ 0& -2& 5& 12\\ 0& -5& -1& -3\\ \end{matrix} \right) \xrightarrow{\begin{array}{c} ③+②\times 2\\ ④+②\times 5\\ \end{array}}\left( \begin{matrix} 1& 3& 1& 2\\ 0& 1& -1& 3\\ 0& 0& 3& 6\\ 0& 0& -6& -12\\ \end{matrix} \right) \xrightarrow{④+③\times 2}\left( \begin{matrix} 1& 3& 1& 2\\ 0& 1& -1& 3\\ 0& 0& 3& 6\\ 0& 0& 0& 0\\ \end{matrix} \right) 13123457124129101 +×(3)+×1+×(2) 10003521115123123 (,) 10003125115123123 +×2+×5 10003100113623612 +×2 1000310011302360

\quad 根据最后一个矩阵,列出与之对应的线性方程组:

( 1 3 1 2 0 1 − 1 3 0 0 3 6 0 0 0 0 ) ⟷ { x 1 + 3 x 2 + x 3 = 2 x 2 − x 3 = − 3 3 x 3 = 6. \left( \begin{matrix} 1& 3& 1& 2\\ 0& 1& -1& 3\\ 0& 0& 3& 6\\ 0& 0& 0& 0\\ \end{matrix} \right) \longleftrightarrow \begin{cases} \begin{aligned} x_1+3x_2+x_3&=2\\ x_2-x_3&=-3\\ 3x_3&=6. \end{aligned}\end{cases} 1000310011302360 x1+3x2+x3x2x33x3=2=3=6.

\quad 可以抽象出 “阶梯形矩阵” 的概念。

阶梯形矩阵:满足以下条件的矩阵称为 阶梯形矩阵

  • 0 0 0 行都在下方;
  • 主元(首个非 0 0 0 元)的列指标随着行指标的增加而严格增大。

\quad 若对 例 1 得到的 阶梯形矩阵 继续 “操作”,则有:

( 1 3 1 2 0 1 − 1 3 0 0 3 6 0 0 0 0 ) → ② + ③ × 1 ① + ③ × ( − 1 ) ( 1 3 0 0 0 1 0 − 1 0 0 1 2 0 0 0 0 ) → ① + ② × ( − 3 ) ( 1 0 0 3 0 1 0 − 1 0 0 1 2 0 0 0 0 ) \left( \begin{matrix} 1& 3& 1& 2\\ 0& 1& -1& 3\\ 0& 0& 3& 6\\ 0& 0& 0& 0\\ \end{matrix} \right) \xrightarrow{\begin{aligned} &② + ③\times 1 \\ &① + ③\times (-1) \end{aligned}} \left( \begin{matrix} 1 & 3 & 0 & 0\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 0 \end{matrix}\right) \xrightarrow{① + ②\times (-3) } \left( \begin{matrix} 1 & 0 & 0 & 3\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 0 \end{matrix}\right) 1000310011302360 +×1+×(1) 1000310000100120 +×(3) 1000010000103120

\quad 根据最后一个矩阵,列写出与之对应的线性方程组:

( 1 0 0 3 0 1 0 − 1 0 0 1 2 0 0 0 0 ) ⟷ { x 1 = 3 x 2 = − 1 x 3 = 2 \left( \begin{matrix} 1 & 0 & 0 & 3\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 0 \end{matrix}\right) \longleftrightarrow \begin{cases} x_1 = 3 \\ x_{2} = -1 \\ x_{3} = 2 \end{cases} 1000010000103120 x1=3x2=1x3=2

可以看到,该方程组实质上就是原方程组的解!

\quad 可以抽象出 “简化行阶梯形矩阵” 的概念。

简化行阶梯形矩阵:满足以下条件的矩阵称为 简化行阶梯形矩阵

  • 主元全为 1 1 1
  • 主元所在列的其余元素全为 0 0 0
  • 同时又是一个阶梯形矩阵。

\quad 总结一下,上面所谓的“操作” 涉及到了 3 3 3 种变换:

  • 一行的倍数加到另一行上;
  • 互换两行的未知;
  • 一行乘以一个非零数。

我们称这 3 3 3 种操作为 矩阵的初等行变换

\quad 对应地,可定义线性方程组的初等行变换。显然,经过初等行变换后的线性方程组与原方程组同解(可以自己验证)。从而:矩阵的初等行变换得到的方程组与原方程组同解!

\quad 现在,可以对求解线性方程组的矩阵消元法作一下总结:

  1. 写出线性方程组对应的增广矩阵;
  2. 使用初等行变换将增广矩阵化为(简化行)阶梯形矩阵;
  3. 从(简化行)阶梯形矩阵中就可以看出原方程组是否有解。

作业:思考与阅读;上册 P12~P15:例 1,例 4;习题1.1:1, 2.

参考

  • 邱维声. 高等代数课程.
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值