大数据预处理工具的综合使用

本文详细介绍了在Ubuntu环境下使用Kettle进行大数据预处理的完整过程,包括环境准备、创建Transformations、配置Hadoop集群连接以及运行任务。通过实例展示了如何处理文本文件,运用字段选择、剪切字符串、JavaScript代码、过滤记录和Hadoop File Output等步骤,最终将清洗后的数据批量导入HDFS。
摘要由CSDN通过智能技术生成

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计4409字,阅读大概需要3分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
⏰个人网站:https://jerry-jy.co/

❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我

一、任务描述

本实验任务主要完成基于ubuntu环境的大数据预处理工具的综合使用的工作。通过完成本实验任务,要求学生熟练掌握使用大数据预处理工具的综合使用的方法,为后续实验的开展奠定ETL平台基础,也为从事大数据平台运维工程师、大数据技术支持工程师等岗位工作奠定夯实的技能基础。

二、任务目标

1、掌握大数据预处理工具的综合使用

三、任务环境

Ubuntu(三台节点:mater,slave1,slave2)、Java1.8、Kettle7.1

四、任务分析

Kettle 中文名称叫水壶,该项目的主程序员MATT 希望把各种数据放到一个壶里,然后以一种指定的格式流出。
  Kettle这个ETL工具集,它允许你管理来自不同数据库的数据,通过提供一个图形化的用户环境来描述你想做什么,而不是你想怎么做。
  Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流的控制。

五、 任务实施

步骤1、环境准备

在节点master上执行命令【start-all.sh】。如图1所示。

在这里插入图片描述

图1 启动Hadoop
  启动成功后,节点出现以下进程信息。如图2所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不懂开发的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值