⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我
语音识别--使用YAMNet识别环境音
使用YAMNet识别环境音
一、任务需求
YAMNet是一个预训练的深度神经网络,可以从521 个类别中预测音频事件,例如笑声、吠叫或警报声。
YAMNet采用MobileNetV1深度可分离卷积架构。它可以使用音频波形作为输入,并对来自AudioSet语料库的 521 个音频事件中的每一个进行独立预测。
在内部,该模型从音频信号中提取“帧”并批量处理这些帧。此版本的模型使用 0.96 秒长的帧,每 0.48 秒提取一帧。
该模型接受包含任意长度波形的一维 float32 张量或 NumPy 数组,表示为范围内的单通道(单声道)16 kHz 样本[-1.0, +1.0]。本教程包含帮助我们将 WAV 文件转换为支持格式的代码。
该模型返回 3 个输出,包括类分数、嵌入(我们将用于迁移学习)和对数梅尔谱图。
YAMNet 的一个特定用途是作为高级特征提取器 - 1,024 维嵌入输出。我们将使用基础 (YAMNet) 模型的输入特征,并将它们输入由一个隐藏tf.keras.layers.Dense层组成的较浅层模型。然后,我们将使用少量数据训练网络以进行音频分类,而无需大量标记数据和端到端训练。
首先,我们将测试模型并查看对音频进行分类的结果。然后,我们将构建数据预处理管道。
要求:加载并使用 YAMNet 模型进行推理。 使用 YAMNet 嵌入构建一个新模型来对环境音进行分类。 评估并导出您的模型。
二、任务目标
1、学习TF Hub使用
2、学习YAMNet网络
3、学习tf模型推理
三、任务环境
1、jupyter开发环境
2、python3.6
3、tensorflow2.4
四、任务实施过程
1、导入 TensorFlow 和其他库
这里我们要载入tensorflow_io,帮助我们轻松地从磁盘加载音频文件。
import os
from IPython import display
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_io as tfio