大模型参数量和占的显存怎么换算?


深度学习模型显存占用计算指南

1. 基本概念

  1. 显存单位换算

    • 1GB = 1024MB
    • 1MB = 1024KB
    • 1KB = 1024字节(Byte)
    • 1字节 = 8比特(bit)
    • 简单估算:1GB ≈ 10^9字节
  2. 参数量

    • 1B = 10亿(10^9)个参数
  3. 精度类型

    • 全精度(fp32):32比特 = 4字节
    • 半精度(fp16):16比特 = 2字节
    • 量化(int8):8比特 = 1字节

2. 显存占用计算公式

理论显存占用 = 参数量 × 每个参数占用的字节数 / 10^9 (GB)

考虑到实际运行中的额外开销,我们需要乘以一个安全系数(1.2~1.5之间,通常取1.3):

实际显存占用 ≈ 理论显存占用 × 1.3

3. 计算示例

  1. 1B参数模型

    • 全精度(fp32):1×4×1.3 = 5.2GB
    • 半精度(fp16):1×2×1.3 = 2.6GB
    • 量化(int8):1×1×1.3 = 1.3GB
  2. Qwen2.5 72B半精度模型

    • 理论显存:72×2 = 144GB
    • 实际显存:144×1.3 ≈ 187GB
    • 部署需求:使用48GB显存的显卡需要4张(187/48≈3.9)

4. 实用建议

  1. 计算显存需求时,建议预留20-30%的余量
  2. 大模型部署通常使用半精度(fp16)以节省显存
  3. 量化技术可以进一步减少显存占用,但可能影响模型精度

通过这个计算方法,你可以快速估算出不同规模模型在不同精度下的显存需求,为硬件选型提供参考。

  1. 1B"的全称是"1 Billion",表示十亿;而"1M"的全称是"1 Million",表示一百万。
  2. B和G都是十亿(1000M或1024M)的意思,M是100万的意思。
  3. 模型参数有xB就是说有x十亿个参数。
  4. 显存有多少G/M是说有多少G/M个字节(byte),1个字节=8比特(bit)。
  5. 1字节(Byte)通常由8个比特组成,FP32使用4字节(32位)表示一个浮点数,而FP16使用2字节(16位)表示一个浮点数
  6. 1B模型参数对应多少G内存和参数的精度有关,如果是全精度训练(fp32),一个参数对应32比特,也就是4个字节,参数换算到显存的时候要乘4,也就是1B模型参数对应4G显存,如果是fp16或者bf16就是乘2,1B模型参数对应2G显存。

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值