模型参数量与显存大小关系

因为GPU资源有限,由此记录一下模型大小与显存的计算关系

# 一般模型默认的加载为半精度【两个字节】,但是同样有很多显卡吃不消

qwen/Qwen-1.8B-Chat   单精度【最大】 bf32/fp32 四个字节 4*1.8 7.2 

qwen/Qwen-1.8B-Chat     # 半精度/2字节[16位浮点数] 2*1.8≈3.6G

qwen/Qwen-1_8B-Chat-Int8    # 1字节[8位整数] 1*1.8≈1.8G --> 实际 2.5G

qwen/Qwen-1_8B-Chat-Int4    # 半字节[4位整数,精度损失很大,适用于对精度要求不高但对资源要求苛刻的场景] 0.5*1.8≈0.9G --> 实际1.88GB

qwen/Qwen-1.8B          # 半精度/2字节[16位浮点数] 2*1.8≈3.6G  base模型和chat模型大小差别不大

==========================================

# 下面是千问1.5-1.8B的模型大小:千问不同版本同规模同精度的模型大小方面变化不大

qwen/Qwen1.5-1.8B-Chat  # 3.6G

qwen/Qwen1.5-1.8B       # 3.6G

qwen/Qwen1.5-1.8B-Chat-GPTQ-Int4    # 1.8G

qwen/Qwen1.5-1.8B-Chat-AWQ          # # 1.8G

qwen/Qwen1.5-7B-Chat-GPTQ-Int4  # 5.8G

# AWQ 是一种自适应权重量化技术,AWQ 能够根据数据分布和模型的动态性质来自适应地调整量化的精度,以尽可能减少精度损失的同时实现高效的量化。

# AWQ和GTPQ目的都是为了减少量化带来的精度损失

GGUF格式:GGUF是为了解决大模型在实际应用中的加载速度慢、资源消耗高等问题而设计的一种优化文件格式。

Qwen1.5-0.5B-Chat-GGUF     # 1.4G ~4.2G不等

q8_0    q6_k    q5_k_m  q5_0    q4_k_m  q4_0    q3_k_m  q2_k 不同的优化格式选择

# model_id='qwen/Qwen1.5-4B-Chat-GGUF',file_path='qwen1_5-4b-chat-q5_k_m.gguf'

### 模型参数量对算力需求的影响 在深度学习领域,模型参数量显著影响所需的计算资源。随着模型复杂性表达能力的增长,更大的参数量意味着更高的存储需求更复杂的运算过程。具体而言: - **内存占用**:较大的模型参数量会直接增加显存或内存的使用率。这是因为每个多出来的权重都需要额外的空间来保存其数值[^1]。 - **计算强度**:更多的参数通常伴随着更多次浮点操作(FLOPs),即每次前向传播反向传播过程中涉及的乘法加法次数增多。这不仅增加了单步训练的时间开销,还可能导致整体收敛时间延长[^2]。 - **批处理尺寸效应**:批量大小决定了每次迭代中使用的样本数;较大批次虽然有助于加速梯度估计平滑损失函数表面,但也相应提高了即时计算负担。因此,在固定硬件条件下,增大模型规模往往需要减小批处理尺寸以适应有限的GPU/CPU资源限制。 为了有效管理这些挑战,实践者需仔细评估任务特性、可用硬件条件以及预算约束等因素,并据此调整设计决策——比如采用混合精度训练方法降低功耗而不牺牲太多准确性,或者探索剪枝等压缩技术减少冗余连接从而减轻负载[^3]。 ```python import torch from thop import profile model = ... # 定义神经网络结构 input_tensor = torch.randn(1, 3, 224, 224) macs, params = profile(model, inputs=(input_tensor,)) print(f"FLOPS: {macs}, Parameters count: {params}") ``` 此代码片段展示了如何利用`thop`库统计给定PyTorch模型的FLOPs(floating point operations per second)及参数总量,这对于初步判断模型的计算密集程度非常有用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值