常微分方程数值解法:
- 一、一阶微分方程的 L i p s c h i t z Lipschitz Lipschitz条件:
- 二、一阶微分方程的 E u l e r Euler Euler解法:
- 三、一阶微分方程的 T a y l o r Taylor Taylor解法:
- 四、一阶微分方程的 R u n g e − K u t t a Runge-Kutta Runge−Kutta解法:
- 五、一阶微分方程的 A d a m s Adams Adams解法:
- 六、一阶微分方程的 M i l n e Milne Milne解法 / S i m p s o n Simpson Simpson解法:
- 七、 一阶微分方程的 H a m m i n g Hamming Hamming解法:
- 八、边值问题的差分解法:
-
一、一阶微分方程的 L i p s c h i t z Lipschitz Lipschitz条件:
对于一阶微分方程的初值问题: y ′ = f ( x , y ) , y ( x 0 ) = y 0 y' = f(x,y), y(x_0) = y_0 y′=f(x,y),y(x0)=y0,若函数 f ( x , y ) f(x,y) f(x,y)满足:
∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ≤ L ∣ y 1 − y 2 ∣ |f(x,y_1)-f(x,y_2)| \le L|y_1-y_2| ∣f(x,y1)−f(x,y2)∣≤L∣y1−y2∣的 L i p s c h i t z Lipschitz Lipschitz条件,
则该问题存在唯一解 y = y ( x ) y=y(x) y=y(x)
-
二、一阶微分方程的 E u l e r Euler Euler解法:
(对于一阶微分方程的初值问题: y ′ = f ( x , y ) , y ( x 0 ) = y 0 y' = f(x,y), y(x_0) = y_0 y′=f(x,y),y(x0)=y0,选择一系列等距离观测点 x i ( 0 ≤ i ≤ n ) x_i(0\le i\le n) xi(0≤i≤n),其中步长: h = x i + 1 − x i h = x_{i+1}-x_i h=xi+1−xi)
(1)前向 E u l e r Euler Euler解法:
y i + 1 = y i + h f ( x i , y i ) ( 0 ≤ i ≤ n ) y_{i+1} = y_i+hf(x_i,y_i) (0\le i \le n) yi+1=yi+hf(xi,yi)(0≤i≤n)
=> 局部截断误差: y ( x n + 1 ) − y n + 1 = h 2 2 y ′ ′ ( x n ) y(x_{n+1})-y_{n+1} = \frac{h^2}{2}y''(x_n) y(xn+1)−yn+1=2h2y′′(xn)
(2)后向 E u l e r Euler Euler解法:
选定 y i + 1 y_{i+1} yi+1的初始值 y i + 1 ( 0 ) = y i + h f ( x i , y i ) y^{(0)}_{i+1} = y_i+hf(x_i,y_i) yi+1(0)=yi+hf(xi,yi),则有迭代式:
y i + 1 ( 1 ) = y i + h f ( x i + 1 , y i + 1 ( 0 ) ) , . . . , y^{(1)}_{i+1} = y_i+hf(x_{i+1},y^{(0)}_{i+1}),..., yi+1(1)=yi+hf(xi+1,yi+1(0)),...,
y i + 1 ( k + 1 ) = y i + h f ( x i + 1 , y i + 1 ( k ) ) ( 0 ≤ i ≤ n ) y^{(k+1)}_{i+1} = y_i+hf(x_{i+1},y^{(k)}_{i+1})(0\le i \le n) yi+1(k+1)=yi+hf(xi+1,yi+1(k))(0≤i≤n)=> k k k根据精度判断,如果迭代过程收敛,则 y i + 1 = lim k → ∞ y i + 1 ( k + 1 ) y_{i+1} = \lim_{k\rightarrow \infty}y^{(k+1)}_{i+1} yi+1=limk→∞yi+1(k+1)
=> 局部截断误差: y ( x n + 1 ) − y n + 1 = − h 2 2 y ′ ′ ( x n ) y(x_{n+1})-y_{n+1} = \frac{-h^2}{2}y''(x_n) y(xn+1)−yn+1=2−h2y′′(xn)
(3)梯形 E u l e r Euler Euler解法:
选定 y i + 1 y_{i+1} yi+1的初始值 y i + 1 ( 0 ) = y i + h f ( x i , y i ) y^{(0)}_{i+1} = y_i+hf(x_i,y_i) yi+1(0)=yi+hf(xi,yi),则有迭代式:
y i + 1 ( 1 ) = y i + h 2 [ f ( x i , y i ) + f ( x i + 1 , y i + 1 ( 0 ) ) ] , . . . , y^{(1)}_{i+1} = y_i+\frac{h}{2}[f(x_i,y_i)+f(x_{i+1},y^{(0)}_{i+1})],..., yi+1(1)=yi+2h[f(xi,yi)+f(xi+1,yi+1(0))],...,
y i + 1 ( k + 1 ) = y i + h 2 [ f ( x i , y i ) + f ( x i + 1 , y i + 1 ( k ) ) ] ( 0 ≤ i ≤ n ) y^{(k+1)}_{i+1} = y_i+\frac{h}{2}[f(x_i,y_i)+f(x_{i+1},y^{(k)}_{i+1})](0\le i \le n) yi+1(k+1)=yi+2h[f(xi,yi)+f(xi+1,yi+1(k))](0≤i≤n)=> k k k根据精度判断,如果迭代过程收敛,则 y i + 1 = lim k → ∞ y i + 1 ( k + 1 ) y_{i+1} = \lim_{k\rightarrow \infty}y^{(k+1)}_{i+1} yi+1=limk→∞yi+1(k+1)
(4)预测-校正 E u l e r Euler Euler解法:
前向预测: y ˉ i + 1 = y i + h f ( x i , y i ) \bar y_{i+1} = y_i+hf(x_i,y_i) yˉi+1=yi+hf(xi,yi)
梯形校正: y i + 1 = y i + h 2 [ f ( x i , y i ) + f ( x i + 1 , y ˉ i + 1 ) ] y_{i+1} = y_i+\frac{h}{2}[f(x_i,y_i)+f(x_{i+1},\bar y_{i+1})] yi+1=yi+2h[f(xi,yi)+f(xi+1,yˉi+1)](5) E u l e r Euler Euler两步解法:
开始值:利用其他方法(如:(1)~(4))通过 y 0 y_0 y0算出 y 1 y_1 y1
两步递推: y i + 1 = y i − 1 + 2 h f ( x i , y i ) y_{i+1} = y_{i-1}+2hf(x_i,y_i) yi+1=yi−1+2hf(xi,yi)
=> 局部截断误差: y ( x n + 1 ) − y n + 1 = − h 3 3 y ′ ′ ′ ( x n ) y(x_{n+1})-y_{n+1} = \frac{-h^3}{3}y'''(x_n) y(xn+1)−yn+1=3−h3y′′′(xn)(6)预测-校正 E u l e r Euler Euler两步解法:
开始值:利用其他方法(如:(1)~(4))通过 y 0 y_0 y0算出 y 1 y_1 y1
两步递推预测: y ˉ i + 1 = y i − 1 + 2 h f ( x i , y i ) \bar y_{i+1} = y_{i-1}+2hf(x_i,y_i) yˉi+1=yi−1+2hf(xi,yi)
梯形校正: y i + 1 = y i + h 2 [ f ( x i , y i ) + f ( x i + 1 , y ˉ i + 1 ) ] y_{i+1} = y_i+\frac{h}{2}[f(x_i,y_i)+f(x_{i+1},\bar y_{i+1})] yi+1=yi+2h[f(xi,yi)+f(xi+1,yˉi+1)]
=> 局部截断误差: y ( x n + 1 ) − y n + 1 = − h 3 12 y ′ ′ ′ ( x n ) y(x_{n+1})-y_{n+1} = \frac{-h^3}{12}y'''(x_n) y(xn+1)−yn+1=12−h3y′′′(xn)
-
三、一阶微分方程的 T a y l o r Taylor Taylor解法:
(对于一阶微分方程的初值问题: y ′ = f ( x , y ) , y ( x 0 ) = y 0 y' = f(x,y), y(x_0) = y_0 y′=f(x,y),y(x0)=y0,选择一系列等距离观测点 x i ( 0 ≤ i ≤ n ) x_i(0\le i\le n) xi(0≤i≤n),其中步长: h = x i + 1 − x i h = x_{i+1}-x_i h=xi+1−xi,利用 T a y l o r Taylor Taylor公式得到)
则p阶 T a y l o r Taylor Taylor解法: y n + 1 = y n + h y n ′ + h 2 2 ! y n ′ ′ + . . . + h p p ! y n ( p ) y_{n+1} = y_n+hy'_n+\frac{h^2}{2!}y''_n+...+\frac{h^p}{p!}y^{(p)}_n yn+1=yn+hyn′+2!h2yn′′+...+p!hpyn(p)
其中: y ′ = f ( x , y ) , . . . , y ( k ) = f ( k − 1 ) ( x , y ) ( k ≥ 1 ) y' = f(x,y),...,y^{(k)} = f^{(k-1)}(x,y)(k\ge 1) y′=f(x,y),...,y(k)=f(k−1)(x,y)(k≥1)
-
四、一阶微分方程的 R u n g e − K u t t a Runge-Kutta Runge−Kutta解法:
(对于一阶微分方程的初值问题: y ′ = f ( x , y ) , y ( x 0 ) = y 0 y' = f(x,y), y(x_0) = y_0 y′=f(x,y),y(x0)=y0,选择一系列等距离观测点 x i ( 0 ≤ i ≤ n ) x_i(0\le i\le n) xi(0≤i≤n),其中步长: h = x i + 1 − x i h = x_{i+1}-x_i h=xi+1−xi,间接利用 T a y l o r Taylor Taylor公式得到)
(1)2阶 R u n g e − K u t t a Runge-Kutta Runge−Kutta解法:
{ y n + 1 = y n + h ( λ 1 K 1 + λ 2 K 2 ) 其 中 λ 1 + λ 2 = 1 K 1 = f ( x n , y n ) K 2 = f ( x n + p , y n + p h K 1 ) 其 中 λ 2 p = 1 2 \begin{cases}y_{n+1} = y_n + h(\lambda_1K_1+\lambda_2K_2) & 其中\lambda_1+\lambda_2=1\\ K_1 = f(x_n,y_n) &\\ K_2 = f(x_{n+p},y_n+phK_1) & 其中\lambda_2p = \frac{1}{2}\\ \end{cases} ⎩⎪⎨⎪⎧yn+1=yn+h(λ1K1+λ2K2)K1=f(xn,yn)K2=f(xn+p,yn+phK1)其中λ1+λ2=1其中λ2p=21常用特例如下所示:
{ y n + 1 = y n + h K 2 K 1 = f ( x n , y n ) K 2 = f ( x n + h 2 , y n + h 2 K 1 ) \begin{cases}y_{n+1} = y_n + hK_2 & \\ K_1 = f(x_n,y_n) &\\ K_2 = f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_1) & \\ \end{cases} ⎩⎪⎨⎪⎧yn+1=yn+hK2K1=f(xn,yn)K2=f(xn+2h,yn+2hK1)(2)3阶 R u n g e − K u t t a Runge-Kutta Runge−Kutta解法:
{ y n + 1 = y n + h ( λ 1 K 1 + λ 2 K 2 + λ 3 K 3 ) 其 中 λ 1 + λ 2 + λ 3 = 1 K 1 = f ( x n , y n ) K 2 = f ( x n + p h , y n + p h K 1 ) 其 中 λ 2 p + λ 3 q = 1 2 , λ 2 p 2 + λ 3 q 2 = 1 3 K 3 = f ( x n + q h , y n + q h ( r K 1 + s K 2 ) ) 其 中 r + s = 1 , λ 3 p q s = 1 6 \begin{cases}y_{n+1} = y_n + h(\lambda_1K_1+\lambda_2K_2+\lambda_3K_3) & 其中\lambda_1+\lambda_2+\lambda_3=1\\ K_1 = f(x_n,y_n) &\\ K_2 = f(x_{n}+ph,y_n+phK_1) & 其中\lambda_2p+ \lambda_3q= \frac{1}{2},\lambda_2p^2+ \lambda_3q^2= \frac{1}{3}\\ K_3 = f(x_{n}+qh,y_n+qh(rK_1+sK_2)) & 其中r+s=1,\lambda_3pqs = \frac{1}{6}\\ \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧yn+1=yn+h(λ1K1+λ2K2+λ3K3)K1=f(xn,yn)K2=f(xn+ph,yn+phK1)K3=f(xn+qh,yn+qh(rK1+sK2))其中λ1+λ2+λ3=1其中λ2p+λ3q=21,λ2p2+λ3q2=31其中r+s=1,λ3pqs=61常用特例如下所示:
{ y n + 1 = y n + h 6 ( K 1 + 4 K 2 + K 3 ) K 1 = f ( x n , y n ) K 2 = f ( x n + h 2 , y n + h 2 K 1 ) K 3 = f ( x n + h , y n − h K 1 + 2 h K 2 ) \begin{cases}y_{n+1} = y_n + \frac{h}{6}(K_1+4K_2+K_3) & \\ K_1 = f(x_n,y_n) &\\ K_2 = f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_1) & \\ K_3 = f(x_n+h,y_n-hK_1+2hK_2) & \\ \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧yn+1=yn+6h(K1+4K2+K3)K1=f(xn,yn)K2=f(xn+2h,yn+2hK1)K3=f(xn+h,yn−hK1+2hK2)(3)4阶 R u n g e − K u t t a Runge-Kutta Runge−Kutta解法:
常用特例如下所示:
{ y n + 1 = y n + h 6 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) K 1 = f ( x n , y n ) K 2 = f ( x n + h 2 , y n + h 2 K 1 ) K 3 = f ( x n + h 2 , y n + h 2 K 1 ) K 4 = f ( x n + h , y n + h K 3 ) \begin{cases}y_{n+1} = y_n + \frac{h}{6}(K_1+2K_2+2K_3+K_4) & \\ K_1 = f(x_n,y_n) &\\ K_2 = f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_1) & \\ K_3 = f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_1) & \\ K_4 = f(x_n+h,y_n+hK_3) & \\ \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧yn+1=yn+6h(K1+2K2+2K3+K4)K1=f(xn,yn)K2=f(xn+2h,yn+2hK1)K3=f(xn+2h,yn+2hK1)K4=f(xn+h,yn+hK3)
-
五、一阶微分方程的 A d a m s Adams Adams解法:
(对于一阶微分方程的初值问题: y ′ = f ( x , y ) , y ( x 0 ) = y 0 y' = f(x,y), y(x_0) = y_0 y′=f(x,y),y(x0)=y0,选择一系列等距离观测点 x i ( 0 ≤ i ≤ n ) x_i(0\le i\le n) xi(0≤i≤n),其中步长: h = x i + 1 − x i h = x_{i+1}-x_i h=xi+1−xi,利用插值公式得到)
(1)显式:
(选取 r + 1 r+1 r+1个插值节点 ( x n , f n ) , ( x n − 1 , f n − 1 ) , . . . , ( x n − r , f n − r ) (x_n,f_n),(x_{n-1},f_{n-1}),...,(x_{n-r},f_{n-r}) (xn,fn),(xn−1,fn−1),...,(xn−r,fn−r)构造插值多项式)y n + 1 = y n + h ∑ i = 0 r β r i f n − i y_{n+1} = y_n+h\sum_{i=0}^r\beta_{ri}f_{n-i} yn+1=yn+h∑i=0rβrifn−i,其中: β r i = ( − 1 ) i ∑ j = i r C j i α j \beta_{ri} = (-1)^i\sum_{j=i}^rC_j^i\alpha_j βri=(−1)i∑j=irCjiαj, α j = ( − 1 ) j ∫ 0 1 C − t j d t \alpha_j = (-1)^j\int_0^1C^j_{-t}dt αj=(−1)j∫01C−tjdt
常用一步显式 A d a m s Adams Adams公式 ( r = 0 ) (r=0) (r=0):即为前向 E u l e r Euler Euler公式
常用两步显式 A d a m s Adams Adams公式 ( r = 1 ) (r=1) (r=1): y n + 1 = y n + h 2 ( 3 f n − f n − 1 ) y_{n+1} = y_n+\frac{h}{2}(3f_n-f_{n-1}) yn+1=yn+2h(3fn−fn−1)
常用四步显式 A d a m s Adams Adams公式 ( r = 3 ) (r=3) (r=3): y n + 1 = y n + h 24 ( 55 f n − 59 f n − 1 + 37 f n − 2 − 9 f n − 3 ) y_{n+1} = y_n+\frac{h}{24}(55f_n-59f_{n-1}+37f_{n-2}-9f_{n-3}) yn+1=yn+24h(55fn−59fn−1+37fn−2−9fn−3)(2)隐式:
(选取 r + 1 r+1 r+1个插值节点 ( x n + 1 , f n + 1 ) , ( x n , f n ) , . . . , ( x n − r + 1 , f n − r + 1 ) (x_{n+1},f_{n+1}),(x_{n},f_{n}),...,(x_{n-r+1},f_{n-r+1}) (xn+1,fn+1),(xn,fn),...,(xn−r+1,fn−r+1)构造插值多项式)y n + 1 = y n + h ∑ i = 0 r β r i f n − i + 1 y_{n+1} = y_n+h\sum_{i=0}^r\beta_{ri}f_{n-i+1} yn+1=yn+h∑i=0rβrifn−i+1,其中: β r i = ( − 1 ) i ∑ j = i r C j i α j \beta_{ri} = (-1)^i\sum_{j=i}^rC_j^i\alpha_j βri=(−1)i∑j=irCjiαj, α j = ( − 1 ) j ∫ − 1 0 C − t j d t \alpha_j = (-1)^j\int_{-1}^0C^j_{-t}dt αj=(−1)j∫−10C−tjdt
常用一步隐式 A d a m s Adams Adams公式 ( r = 0 ) (r=0) (r=0):即为后向 E u l e r Euler Euler公式
常用两步隐式 A d a m s Adams Adams公式 ( r = 1 ) (r=1) (r=1):即为梯形 E u l e r Euler Euler公式
常用四步隐式 A d a m s Adams Adams公式 ( r = 3 ) (r=3) (r=3): y n + 1 = y n + h 24 ( 9 f n + 1 + 19 f n − 5 f n − 1 + f n − 2 ) y_{n+1} = y_n+\frac{h}{24}(9f_{n+1}+19f_{n}-5f_{n-1}+f_{n-2}) yn+1=yn+24h(9fn+1+19fn−5fn−1+fn−2)(3)四步显隐预测-校正:
预测: y ˉ n + 1 = y n + h 24 ( 55 f n − 59 f n − 1 + 37 f n − 2 − 9 f n − 3 ) \bar y_{n+1} = y_n+\frac{h}{24}(55f_n-59f_{n-1}+37f_{n-2}-9f_{n-3}) yˉn+1=yn+24h(55fn−59fn−1+37fn−2−9fn−3)
f ˉ n + 1 = f ( x n + 1 , y ˉ n + 1 ) \bar f_{n+1} = f(x_{n+1},\bar y_{n+1}) fˉn+1=f(xn+1,yˉn+1)
校正: y n + 1 = y n + h 24 ( 9 f ˉ n + 1 + 19 f n − 5 f n − 1 + f n − 2 ) y_{n+1} = y_n+\frac{h}{24}(9\bar f_{n+1}+19f_{n}-5f_{n-1}+f_{n-2}) yn+1=yn+24h(9fˉn+1+19fn−5fn−1+fn−2)
f n + 1 = f ( x n + 1 , y n + 1 ) f_{n+1} = f(x_{n+1},y_{n+1}) fn+1=f(xn+1,yn+1)
-
六、一阶微分方程的 M i l n e Milne Milne解法 / S i m p s o n Simpson Simpson解法:
(对于一阶微分方程的初值问题: y ′ = f ( x , y ) , y ( x 0 ) = y 0 y' = f(x,y), y(x_0) = y_0 y′=f(x,y),y(x0)=y0,选择一系列等距离观测点 x i ( 0 ≤ i ≤ n ) x_i(0\le i\le n) xi(0≤i≤n),其中步长: h = x i + 1 − x i h = x_{i+1}-x_i h=xi+1−xi,利用 T a y l o r Taylor Taylor四阶公式得到)
M i l n e Milne Milne解法预测: y ˉ n + 1 = y n − 3 + 4 h 3 ( 2 y n ′ − y n − 1 ′ + 2 y n − 2 ′ ) \bar y_{n+1} = y_{n-3}+\frac{4h}{3}(2y'_n-y'_{n-1}+2y'_{n-2}) yˉn+1=yn−3+34h(2yn′−yn−1′+2yn−2′)
S i m p s o n Simpson Simpson解法校正: y n + 1 = y n − 1 + h 3 ( 2 y ˉ n + 1 ′ + 4 y n ′ + y n − 1 ′ ) y_{n+1} = y_{n-1}+\frac{h}{3}(2\bar y'_{n+1}+4y'_{n}+y'_{n-1}) yn+1=yn−1+3h(2yˉn+1′+4yn′+yn−1′)
-
七、 一阶微分方程的 H a m m i n g Hamming Hamming解法:
(对于一阶微分方程的初值问题: y ′ = f ( x , y ) , y ( x 0 ) = y 0 y' = f(x,y), y(x_0) = y_0 y′=f(x,y),y(x0)=y0,选择一系列等距离观测点 x i ( 0 ≤ i ≤ n ) x_i(0\le i\le n) xi(0≤i≤n),其中步长: h = x i + 1 − x i h = x_{i+1}-x_i h=xi+1−xi)
y n + 1 = 1 8 ( 9 y n − y n − 2 ) + 3 h 8 ( y n + 1 ′ + 2 y n ′ − y n − 1 ′ ) y_{n+1} = \frac{1}{8}(9y_{n}-y_{n-2})+\frac{3h}{8}( y'_{n+1}+2y'_{n}-y'_{n-1}) yn+1=81(9yn−yn−2)+83h(yn+1′+2yn′−yn−1′)
-
八、边值问题的差分解法:
(对于在区间 [ a , b ] [a,b] [a,b]上的二阶微分方程的边值问题: y ‘ ’ = f ( x , y ′ ) , y ( a ) = α , y ( b ) = β y‘’ = f(x,y'), y(a) = \alpha,y(b)=\beta y‘’=f(x,y′),y(a)=α,y(b)=β,选择一系列等距离观测点 x i ( 0 ≤ i ≤ n ) x_i(0\le i\le n) xi(0≤i≤n),其中步长: h = x i + 1 − x i h = x_{i+1}-x_i h=xi+1−xi,利用差分代替导数)
{ y 0 = α , y n = β y i + 1 − 2 y i + y i − 1 h 2 = f ( x i , y i , y i + 1 − y i − 1 2 h ) 1 ≤ i ≤ n − 1 \begin{cases} y_0 = \alpha,y_n = \beta & \\ \cfrac{y_{i+1}-2y_i+y_{i-1}}{h^2} = f(x_i,y_i,\cfrac{y_{i+1}-y_{i-1}}{2h}) & 1\le i\le n-1 \end{cases} ⎩⎨⎧y0=α,yn=βh2yi+1−2yi+yi−1=f(xi,yi,2hyi+1−yi−1)1≤i≤n−1
特殊地,若为二阶线性微分方程: y ′ ′ + p ( x ) y ′ + q ( x ) y = r y''+p(x)y'+q(x)y = r y′′+p(x)y′+q(x)y=r
则有如下线性方程组:
{ y 0 = α , y n = β y i + 1 − 2 y i + y i − 1 h 2 + p i y i + 1 − y i − 1 2 h + q i y i = r i 1 ≤ i ≤ n − 1 \begin{cases} y_0 = \alpha,y_n = \beta & \\ \cfrac{y_{i+1}-2y_i+y_{i-1}}{h^2} +p_i\cfrac{y_{i+1}-y_{i-1}}{2h} +q_iy_i = r_i& 1\le i\le n-1 \end{cases} ⎩⎨⎧y0=α,yn=βh2yi+1−2yi+yi−1+pi2hyi+1−yi−1+qiyi=ri1≤i≤n−1