概率论考研笔记(三)

概率论考研笔记(三):随机向量

  • 随机向量相关概念和性质:
概念释义性质
n维随机向量若随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn定义在同一个样本空间 Ω \Omega Ω上,则称 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)为一个n维随机向量分为离散型和连续型两种;
有时用黑体X,Y等表示n维随机向量;
性质可由维度推广,故仅需研究二维即可
联合分布律离散型随机向量 ( X , Y ) (X,Y) (X,Y)的所有可能取值为 ( x i , y j ) (x_i,y_j) (xi,yj),则称 P ( X = x i , Y = y j ) = p i j P(X = x_i,Y = y_j) = p_{ij} P(X=xi,Y=yj)=pij为随机向量 ( X , Y ) (X,Y) (X,Y)的联合分布律 p i j ≥ 0 p_{ij} \geq 0 pij0
∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1 \sum_{i=1}^{\infty}\sum_{j=1}^{\infty} p_{ij} = 1 i=1j=1pij=1
③联合分布律可以有列联表表示;
④当X和Y相互独立时: P ( X = x i , Y = y j ) = P ( X = x i ) P ( Y = y j ) , 即 p i j = p i ⋅ p ⋅ j P(X = x_i,Y = y_j) = P(X=x_i)P(Y=y_j),即p_{ij} = p_{i\cdot}p_{\cdot j} P(X=xi,Y=yj)=P(X=xi)P(Y=yj),pij=pipj
边缘分布律离散型随机向量 ( X , Y ) (X,Y) (X,Y)的联合分布律为 P ( X = x i , Y = y j ) = p i j P(X = x_i,Y = y_j) = p_{ij} P(X=xi,Y=yj)=pij,则称 P ( X = x i ) = ∑ j = 1 ∞ p i j = p i ⋅ P(X = x_i) = \sum_{j=1}^{\infty}p_{ij} = p_{i\cdot} P(X=xi)=j=1pij=pi P ( Y = y j ) = ∑ i = 1 ∞ p i j = p ⋅ j P(Y = y_j) = \sum_{i=1}^{\infty}p_{ij} = p_{\cdot j} P(Y=yj)=i=1pij=pj为其边缘分布律可以由联合分布律的列联表的同一行/同一列的概率相加得到边缘分布律
联合分布函数 F ( x , y ) F(x,y) F(x,y)对于任意实数x,y,称二元函数 F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y) = P(X \leq x, Y \leq y) F(x,y)=P(Xx,Yy)为随机向量 ( X , Y ) (X,Y) (X,Y)的联合分布函数与随机变量分布函数一样,满足①单调不减性、② 0 ≤ F ( x , y ) ≤ 1 0\leq F(x,y) \leq 1 0F(x,y)1、③右连续;
④对于任意实数 x 1 ≤ x 2 x_1\leq x_2 x1x2 y 1 ≤ y 2 y_1\leq y_2 y1y2,有: F ( x 1 , y 1 ) + F ( x 2 , y 2 ) ≥ F ( x 1 , y 2 ) + F ( x 2 , y 1 ) F(x_1,y_1)+F(x_2,y_2) \geq F(x_1,y_2) + F(x_2,y_1) F(x1,y1)+F(x2,y2)F(x1,y2)+F(x2,y1) =>
②、③、④为充要条件
⑤当X和Y相互独立时: F ( x , y ) = F X ( x ) F Y ( y ) F(x,y) = F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
边缘分布函数由随机向量 ( X , Y ) (X,Y) (X,Y)的联合分布函数 F ( x , y ) F(x,y) F(x,y)可以得到各分量X和Y的分布函数 F X ( x ) 和 F Y ( y ) F_X(x)和F_Y(y) FX(x)FY(y),称其为 ( X , Y ) (X,Y) (X,Y)的边缘分布函数 F X ( x ) = F ( x , + ∞ ) F_X(x) = F(x,+\infty) FX(x)=F(x,+)
F Y ( y ) = F ( + ∞ , y ) F_Y(y) = F(+\infty,y) FY(y)=F(+,y)
联合概率密度 f ( x , y ) f(x,y) f(x,y)设二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数为 F ( x , y ) F(x,y) F(x,y),若存在非负可积二元函数 f ( x , y ) f(x,y) f(x,y)使得对于任意实数x,y,有: F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v F(x,y) = \int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)dudv F(x,y)=xyf(u,v)dudv,则称 ( X , Y ) (X,Y) (X,Y)二维连续型随机变量,且其中的 f ( x , y ) f(x,y) f(x,y) ( X , Y ) (X,Y) (X,Y)联合概率密度 f ( x , y ) ≥ 0 f(x,y) \geq 0 f(x,y)0
∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy = 1 ++f(x,y)dxdy=1;
P ( ( X , Y ) ∈ D ) = ∬ D f ( x , y ) d x d y P((X,Y) \in D) = \iint_{D}f(x,y)dxdy P((X,Y)D)=Df(x,y)dxdy;
④当X和Y相互独立时: f ( x , y ) = f X ( x ) f Y ( y ) f(x,y) = f_X(x)f_Y(y) f(x,y)=fX(x)fY(y);
f ( x , y ) = ∂ 2 F ( x , y ) ∂ x ∂ y f(x,y) = \cfrac{\partial^2 F(x,y)}{\partial x\partial y} f(x,y)=xy2F(x,y);
边缘概率密度连续型随机向量 ( X , Y ) (X,Y) (X,Y)的联合概率密度 f ( x , y ) f(x,y) f(x,y)可以得到各分量X和Y的概率密度 f X ( x ) 和 f Y ( y ) f_X(x)和f_Y(y) fX(x)fY(y),称其为 ( X , Y ) (X,Y) (X,Y)的边缘概率密度连续型随机向量各分量也是连续型的随机变量,反之不一定成立;
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x) = \int_{-\infty}^{+\infty}f(x,y)dy fX(x)=+f(x,y)dy
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_Y(y) = \int_{-\infty}^{+\infty}f(x,y)dx fY(y)=+f(x,y)dx

  • 常见二维离散型随机向量的分布:
分布名称参数分布律期望方差随机试验模型 / 性质
多项分布 M M M n , p 1 , p 2 n,p_1,p_2 n,p1,p2 P ( X 1 = k 1 , X 2 = k 2 ) = n ! k 1 ! k 2 ! k 3 ! p 1 k 1 p 2 k 2 p 3 k 3 P(X_1=k_1,X_2=k_2) = \frac{n!}{k_1!k_2!k_3!}p_1^{k_1}p2^{k_2}p_3^{k_3} P(X1=k1,X2=k2)=k1!k2!k3!n!p1k1p2k2p3k3
其中: k 3 = n − k 1 − k 2 , p 3 = 1 − p 1 − p 2 k_3 = n-k_1-k_2,p_3=1-p_1-p_2 k3=nk1k2,p3=1p1p2
二项分布的推广,即在 n n n重伯努利试验中每次均有三种可能出现的结果 A 1 , A 2 , A 3 A_1,A_2,A_3 A1,A2,A3
多元超几何分布 H H H n , N , N 1 , N 2 n,N,N_1,N_2 n,N,N1,N2 P ( X 1 = k 1 , X 2 = k 2 ) = C N 1 k 1 C N 2 k 2 C N 3 k 3 C N n P(X_1=k_1,X_2=k_2) = \frac{C_{N_1}^{k_1}C_{N_2}^{k_2}C_{N_3}^{k_3}}{C_N^{n}} P(X1=k1,X2=k2)=CNnCN1k1CN2k2CN3k3
其中: k 3 = n − k 1 − k 2 , N 3 = N − N 1 − N 2 k_3 = n-k_1-k_2,N_3=N-N_1-N_2 k3=nk1k2,N3=NN1N2
超几何分布的直接推广

  • 常见二维连续型随机向量的分布:
分布名称参数概率密度期望方差随机试验模型 / 性质
平面上的均匀分布 U U U a , b , c , d a,b,c,d a,b,c,d f ( x , y ) = { 1 S ( x , y ) ∈ G 0 o t h e r s f(x,y) = \begin{cases}\cfrac{1}{S}&(x,y)\in G\\0& others\end{cases} f(x,y)=S10(x,y)Gothers数轴上均匀分布的直接推广
二元正态分布 N N N μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ \mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho μ1,μ2,σ12,σ22,ρ f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) t t = [ ( x − μ 1 ) 2 σ 1 2 + ( y − μ 2 ) 2 σ 2 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 ] f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{\frac{-1}{2(1-\rho^2)}t}\\t = [\frac{(x-\mu_1)^2}{\sigma_1^2}+\frac{(y-\mu_2)^2}{\sigma_2^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}] f(x,y)=2πσ1σ21ρ2 1e2(1ρ2)1tt=[σ12(xμ1)2+σ22(yμ2)22ρσ1σ2(xμ1)(yμ2)]正态分布的直接推广,其中 ρ \rho ρ X 1 , X 2 X_1,X_2 X1,X2的相关系数;
二维正态随机变量的分量X,Y相互独立的充要条件 ρ = 0 \rho=0 ρ=0,即X,Y不相关

  • 二维离散型随机向量函数的分布:

( X , Y ) (X,Y) (X,Y)为二维离散型随机向量,且有联合分布律: P ( X = x i , Y = y j ) = p i j P(X = x_i,Y = y_j) = p_{ij} P(X=xi,Y=yj)=pij,则若 Z = g ( X , Y ) Z = g(X,Y) Z=g(X,Y)是离散型随机变量,则其分布律可表示为:
P ( Z = k ) = P ( g ( X , Y ) = k ) = ∑ g ( x i , y j ) = k p i j P(Z = k) = P(g(X,Y) = k) = \sum\limits_{g(x_i,y_j) = k}p_{ij} P(Z=k)=P(g(X,Y)=k)=g(xi,yj)=kpij

特殊地,
① 当 g ( X , Y ) = X + Y g(X,Y) = X+Y g(X,Y)=X+Y时,有卷积公式
P ( Z = k ) = ∑ i = 0 k P ( X = i , Y = k − i ) P(Z = k) =\sum\limits_{i=0}^k P(X=i,Y=k-i) P(Z=k)=i=0kP(X=i,Y=ki)

② 当 g ( X , Y ) = max ⁡ { X , Y } g(X,Y) = \max\{X,Y\} g(X,Y)=max{X,Y},有:
P ( Z = k ) = P ( X = k , Y = k ) + P ( X = k , ⋃ j = 0 k − 1 Y = j ) + P ( Y = k , ⋃ j = 0 k − 1 X = j ) P(Z=k) = P(X=k,Y=k)+P(X=k,\bigcup\limits_{j=0}^{k-1} Y=j)+P(Y=k,\bigcup\limits_{j=0}^{k-1} X=j) P(Z=k)=P(X=k,Y=k)+P(X=k,j=0k1Y=j)+P(Y=k,j=0k1X=j)

② 当 g ( X , Y ) = min ⁡ { X , Y } g(X,Y) = \min\{X,Y\} g(X,Y)=min{X,Y},有:
P ( Z = k ) = P ( X = k , Y = k ) + P ( X = k , ⋃ j > k Y = j ) + P ( Y = k , ⋃ j > k X = j ) P(Z=k) = P(X=k,Y=k)+P(X=k,\bigcup\limits_{j>k}Y=j)+P(Y=k,\bigcup\limits_{j>k} X=j) P(Z=k)=P(X=k,Y=k)+P(X=k,j>kY=j)+P(Y=k,j>kX=j)


  • 二维连续型随机向量函数的分布:

( X , Y ) (X,Y) (X,Y)为二维连续型随机向量,且有联合概率密度 f ( x , y ) f(x,y) f(x,y),则若 Z = g ( X , Y ) Z = g(X,Y) Z=g(X,Y)是连续型随机变量,则其概率密度可表示为:
f Z ( z ) = [ F Z ( z ) ] ′ = [ P ( Z ≤ z ) ] ′ = [ P ( g ( X , Y ) ) ≤ z ] ′ = d d z ∬ g ( x , y ) ≤ z f ( x , y ) d x d y f_Z(z) = [F_Z(z)]' = [P(Z \leq z)]' = [P(g(X,Y))\leq z]' = \frac{d}{dz} \iint\limits_{g(x,y)\leq z}f(x,y)dxdy fZ(z)=[FZ(z)]=[P(Zz)]=[P(g(X,Y))z]=dzdg(x,y)zf(x,y)dxdy

特殊地,
① 若 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)容易推得: X = h X ( Y , Z ) X = h_X(Y,Z) X=hX(Y,Z) Y = h Y ( X , Z ) Y=h_Y(X,Z) Y=hY(X,Z),则可利用雅克比行列式换元得到如下公式:
f Z ( z ) = ∣ ∂ x ∂ z ∣ ∫ − ∞ + ∞ f ( h X , y ) d y = ∣ ∂ y ∂ z ∣ ∫ − ∞ + ∞ f ( x , h Y ) d x f_Z(z) = |\cfrac{\partial x}{\partial z}|\int_{-\infty}^{+\infty}f(h_X,y)dy= |\cfrac{\partial y}{\partial z}|\int_{-\infty}^{+\infty}f(x,h_Y)dx fZ(z)=zx+f(hX,y)dy=zy+f(x,hY)dx
常见的有:

  • g ( X , Y ) = X + Y g(X,Y) = X+Y g(X,Y)=X+Y时,有卷积公式
    f Z ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y = ∫ − ∞ + ∞ f ( x , z − x ) d x f_Z(z) = \int_{-\infty}^{+\infty}f(z-y,y)dy= \int_{-\infty}^{+\infty}f(x,z-x)dx fZ(z)=+f(zy,y)dy=+f(x,zx)dx

  • g ( X , Y ) = X Y g(X,Y)=XY g(X,Y)=XY时,有公式:
    f Z ( z ) = 1 ∣ y ∣ ∫ − ∞ + ∞ f ( z / y , y ) d y = 1 ∣ x ∣ ∫ − ∞ + ∞ f ( x , z / x ) d x f_Z(z) = \cfrac{1}{|y|}\int_{-\infty}^{+\infty}f(z/y,y)dy= \cfrac{1}{|x|}\int_{-\infty}^{+\infty}f(x,z/x)dx fZ(z)=y1+f(z/y,y)dy=x1+f(x,z/x)dx

  • g ( X , Y ) = X / Y g(X,Y)=X/Y g(X,Y)=X/Y时,有公式:
    f Z ( z ) = ∣ y ∣ ∫ − ∞ + ∞ f ( y z , y ) d y = ∣ x ∣ z 2 ∫ − ∞ + ∞ f ( x , x / z ) d x f_Z(z) = |y|\int_{-\infty}^{+\infty}f(yz,y)dy= \cfrac{|x|}{z^2}\int_{-\infty}^{+\infty}f(x,x/z)dx fZ(z)=y+f(yz,y)dy=z2x+f(x,x/z)dx

② 当 g ( X , Y ) = max ⁡ { X , Y } g(X,Y) = \max\{X,Y\} g(X,Y)=max{X,Y},且X,Y相互独立时,有:
F Z ( z ) = P ( Z ≤ z ) = P ( max ⁡ { X , Y } ≤ z ) = P ( X ≤ z ) P ( Y ≤ z ) = F X ( z ) F Y ( z ) F_Z(z) = P(Z\le z)=P(\max\{X,Y\} \le z) = P(X\le z)P(Y\le z)=F_X(z)F_Y(z) FZ(z)=P(Zz)=P(max{X,Y}z)=P(Xz)P(Yz)=FX(z)FY(z)

③ 当 g ( X , Y ) = min ⁡ { X , Y } g(X,Y) = \min\{X,Y\} g(X,Y)=min{X,Y},且X,Y相互独立时,有:
F Z ( z ) = P ( Z ≤ z ) = P ( min ⁡ { X , Y } ≤ z ) = 1 − P ( min ⁡ { X , Y } > z ) = 1 − P ( X > z ) P ( Y > z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_Z(z) = P(Z\le z)=P(\min\{X,Y\} \le z) = 1-P(\min\{X,Y\} > z) = 1 - P(X>z)P(Y> z)=1-[1-F_X(z)][1-F_Y(z)] FZ(z)=P(Zz)=P(min{X,Y}z)=1P(min{X,Y}>z)=1P(X>z)P(Y>z)=1[1FX(z)][1FY(z)]


  • 二维离散型随机向量的条件分布:

( X , Y ) (X,Y) (X,Y)是二维离散型随机向量,且有分布律: P ( X = x i , Y = y j ) = p i j P(X = x_i,Y = y_j) = p_{ij} P(X=xi,Y=yj)=pij
X = x i X = x_i X=xi的条件下,Y的条件分布律为

Y ∥ X = x i Y\|X=x_i YX=xi y 1 y_1 y1 y 2 y_2 y2 y j y_j yj
P P P p i 1 / p i ⋅ p_{i1}/p_{i\cdot} pi1/pi p i 2 / p i ⋅ p_{i2}/p_{i\cdot} pi2/pi p i j / p i ⋅ p_{ij}/p_{i\cdot} pij/pi

X X X的条件分布律同理可得;


  • 二维连续型随机向量的条件分布:

( X , Y ) (X,Y) (X,Y)是二维连续型随机向量,且有联合概率密度 f ( x , y ) f(x,y) f(x,y)
X = x i X = x_i X=xi的条件下,Y的条件密度为 f Y ∥ X = x i ( y ) = f ( x , y ) f X ( x i ) f_{Y \| X = x_i }(y) = \frac{f(x,y)}{f_X(x_i)} fYX=xi(y)=fX(xi)f(x,y)
X X X的条件密度同理可得;


  • 二维离散型随机向量函数的期望:

对于二维离散型随机向量 ( X , Y ) (X,Y) (X,Y),若其联合分布律为 P ( X = x i , Y = y j ) = p i j P(X=x_i,Y=y_j)=p_{ij} P(X=xi,Y=yj)=pij,则有:

E ( Z ) = E [ g ( X , Y ) ] = ∑ i ∑ j g ( x i , y j ) p i j E(Z) = E[g(X,Y)] = \sum\limits_{i}\sum\limits_{j} g(x_i,y_j)p_{ij} E(Z)=E[g(X,Y)]=ijg(xi,yj)pij
特殊地,
E ( X ) = ∑ i ∑ j x i p i j E(X)= \sum\limits_{i}\sum\limits_{j} x_ip_{ij} E(X)=ijxipij
E ( Y ) = ∑ i ∑ j y j p i j E(Y)= \sum\limits_{i}\sum\limits_{j} y_jp_{ij} E(Y)=ijyjpij


  • 二维连续型随机向量函数的期望:

对于二维连续型随机向量 ( X , Y ) (X,Y) (X,Y),若其联合概率密度为 f ( x , y ) f(x,y) f(x,y),则有:
E ( Z ) = E [ g ( X , Y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E(Z) = E[g(X,Y)] =\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy E(Z)=E[g(X,Y)]=++g(x,y)f(x,y)dxdy
特殊地,
E ( X ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x f ( x , y ) d x d y E(X) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xf(x,y)dxdy E(X)=++xf(x,y)dxdy
E ( Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ y f ( x , y ) d x d y E(Y) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)dxdy E(Y)=++yf(x,y)dxdy



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值