《论文阅读》一种基于反事实推理的会话情绪检测无训练去偏框架 EMNLP 2023
前言
亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~
无抄袭,无复制,纯手工敲击键盘~
今天为大家带来的是《A Training-Free Debiasing Framework with Counterfactual Reasoning for Conversational Emotion Detection》

出版: EMNLP
时间:2023
类型:对话情绪识别
关键词:情绪识别;对话;去除偏差
作者:Geng Tu, Ran Jing等
第一作者机构:Harbin Institute of Technology, Shenzhen, China
简介
在过去的对话情绪识别任务中,人们通常重点捕获对上下文、说话者敏感的依赖关系,而忽略了数据集本身存在的数据偏置,如标签的偏置、说话者的偏置以及单词的偏置,为了消除这种固有的偏置,
该论文提出了一种无需训练的去偏框架(TFDF),用于对话情绪识别。TFDF通过反事实推理提取并减少数据中的标签偏置、说话者偏置和中性词偏置。作者使用EmoryNLP数据集展示了数据集中的偏置问题,并通过因果图和do-calculus进行模型调整,消除潜在的错误关联。实验结果表明了这种方法的有效性。
订阅专栏 解锁全文
1682

被折叠的 条评论
为什么被折叠?



