一款由字节复刻Manus的开源AI自动化任务处理工具:LangManus,它通过LLM和网络搜索、网页爬取、浏览器控制等各种工具结合来实现任务自动化,可以实现本地部署使用,支持国产AI大模型API

LangManus:一款强大的AI自动化任务处理工具

一句话总结:一款由字节复刻Manus的开源AI自动化任务处理工具:LangManus,它通过LLM和网络搜索、网页爬取、浏览器控制等各种工具结合来实现任务自动化,可以实现本地部署使用,支持国产AI大模型API。

在人工智能和自动化技术不断发展的今天,如何高效地将多个工具和智能体结合在一起,以完成复杂的任务,成为了众多开发者的挑战。LangManus应运而生,它通过集成大语言模型(LLM)、网络搜索、网页爬取和浏览器控制等多种工具,能够自动化处理多步骤复杂的研究任务。本文将详细介绍LangManus的架构、功能、安装和使用方法。
一款由字节复刻Manus的开源AI自动化任务处理工具:LangManus,它通过LLM和网络搜索、网页爬取、浏览器控制等各种工具结合来实现任务自动化


作者简介

猫头虎是谁?

大家好,我是 猫头虎,猫头虎技术团队创始人,也被大家称为猫哥。我目前是COC北京城市开发者社区主理人COC西安城市开发者社区主理人,以及云原生开发者社区主理人,在多个技术领域如云原生、前端、后端、运维和AI都具备丰富经验。


作者名片 ✍️

  • 博主猫头虎
  • 全网搜索关键词猫头虎
  • 作者微信号Libin9iOak
  • 作者公众号猫头虎技术团队
  • 更新日期2025年03月21日
  • 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!

正文

一、LangManus概述

LangManus是一款社区驱动的AI自动化框架,旨在将多个开源项目结合在一起,提供一种灵活的多智能体系统架构。它通过协调员、规划员、主管、研究员、程序员等智能体的协作,自动化完成多步骤任务,例如在HuggingFace上计算模型的影响力指数。

仓库地址:https://github.com/MaoTouHU/byte-langmanus/edit/main/README_zh.md

webUI地址 :https://github.com/MaoTouHU/byte-langmanus-web

LangManus支持通过自然语言或API与系统交互,能够根据用户的需求选择合适的模型和工具,定制不同的工作流程。通过与各大开源工具(如Tavily、Jina、Browser-use等)的集成,LangManus可以执行各种复杂的操作,从网络搜索到数据分析,再到自动化脚本执行。
一款由字节复刻Manus的开源AI自动化任务处理工具:LangManus,它通过LLM和网络搜索、网页爬取、浏览器控制等各种工具结合来实现任务自动化

二、架构设计

LangManus的架构基于分层的多智能体系统,每个智能体专注于不同的任务:

  1. 协调员(Coordinator):作为任务的入口点,负责处理初始的交互和任务分发。
  2. 规划员(Planner):负责分析任务的要求,并制定详细的执行策略。
  3. 主管(Supervisor):监督其他智能体的执行情况,确保任务按照计划进行。
  4. 研究员(Researcher):负责收集信息和分析数据,通常涉及到网络爬取和内容提取。
  5. 程序员(Coder):执行代码生成和修改,帮助完成计算和脚本任务。
  6. 浏览器(Browser):执行网页浏览和信息检索,处理网页交互。
  7. 汇报员(Reporter):负责生成任务执行后的报告和总结。

这种分层设计让LangManus能够高效地处理复杂任务,并通过任务的拆解和智能体的协作,逐步完成整个工作流。
一款由字节复刻Manus的开源AI自动化任务处理工具:LangManus,它通过LLM和网络搜索、网页爬取、浏览器控制等各种工具结合来实现任务自动化

三、核心功能

1. LLM集成

LangManus支持多种语言模型,包括开源模型如通义千问和OpenAI的API接口。其多层LLM系统能够适应不同任务的复杂度,从简单的任务到复杂的推理分析都能轻松应对。

2. 搜索与检索

LangManus通过集成Tavily API进行网络搜索,使用Jina进行神经搜索,并且支持高级内容提取。这使得LangManus能够获取到最新的信息,并进行深度分析。

3. Python集成

LangManus内置Python REPL,支持Python代码执行和分析,并通过uv包管理器简化了依赖管理。

4. 工作流管理

LangManus提供工作流程图可视化、任务分配和监控功能。开发者可以在可视化界面中轻松管理任务的执行过程,确保每个环节按计划执行。

四、安装与配置

1. 安装前置要求

首先,您需要安装uv包管理器来管理项目依赖:

uv python install 3.12
uv venv --python 3.12
2. 安装项目依赖

克隆仓库并安装所需的依赖:

git clone https://github.com/langmanus/langmanus.git
cd langmanus
uv sync

然后,运行以下命令来安装Playwright和Chromium:

uv run playwright install
3. 配置环境

复制.env.example文件为.env,并配置相关的API密钥和模型信息:

cp .env.example .env

编辑.env文件并填入API密钥,模型配置等信息。

五、使用LangManus

1. 基本执行

运行LangManus的主要程序:

uv run main.py
2. API服务

LangManus还提供了一个基于FastAPI的API服务器,支持流式响应,可以通过以下命令启动API服务:

make serve

或者直接运行:

uv run server.py

API服务器提供流式响应端点,支持LangGraph调用。

六、为什么选择LangManus?

LangManus的独特之处在于它通过开源社区的协作,将多个开源工具无缝集成,提供了强大的自动化任务处理能力。其支持的功能包括:

  • 高效的LLM集成
  • 强大的搜索和内容提取功能
  • 灵活的Python执行环境
  • 可视化的工作流管理界面

通过LangManus,用户可以快速构建定制化的自动化工作流程,并利用其强大的工具集自动化处理研究任务。

七、结语

LangManus是一款功能强大的AI自动化框架,能够帮助开发者在复杂的研究任务中提高效率。它的分层智能体系统、LLM集成、搜索工具和Python支持使得它能够应对各类复杂任务,特别适合需要多步骤操作和数据分析的场景。如果你有兴趣了解更多或参与贡献,欢迎访问LangManus的GitHub页面


粉丝福利


👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击文末名片获取更多信息。我是猫头虎博主,期待与您的交流! 🦉💬


联系我与版权声明 📩

  • 联系方式
    • 微信: Libin9iOak
    • 公众号: 猫头虎技术团队
  • 版权声明
    本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页

点击✨⬇️下方名片⬇️✨,加入猫头虎AI共创社群矩阵。一起探索科技的未来,共同成长。🚀

<think>好的,用户提到了“LangManus IT相关内容”,但我不太确定具体指的是什么。首先,我需要检查是否有拼写错误或可能的变体。例如,“LangManus”可能是“LangManus”的拼写错误,或者用户想表达的是“LangManus”相关的术语。 考虑到IT领域,可能的关联方向包括编程语言、框架、工具或特定技术。例如: 1. **LangChain**:一个用于构建基于语言模型的应用程序的框架。 2. **LangServer**:语言服务器协议(LSP)的实现,用于代码编辑器的智能功能。 3. **Langmuir**:可能与表面科学相关,但不太符合IT主题。 此外,“LangManus”可能与某个特定品牌、开源项目或研究项目相关,但暂时没有广泛认知的记录。需要进一步澄清。 用户可能在寻找语言模型(如LangChain)的应用,或者与自然语言处理(NLP)相关的工具。例如,LangChain常用于整合大型语言模型(如GPT)到应用程序中,实现问答系统、自动化流程等[^1]。 为了确保准确性,建议用户提供更多上下文或确认术语的正确性。</think>由于“LangManus”在公开的IT资料中暂未明确对应到特定技术或工具,以下提供几种可能相关的方向及扩展说明: --- ### 1. **若指代语言模型框架(如LangChain)** LangChain是一个开源框架,用于构建基于大型语言模型(如GPT-4)的应用程序。其核心功能包括: - **链式调用**:将多个语言模型操作串联,例如:`输入解析 → 模型生成 → 结果过滤`。 - **工具集成**:支持连接数据库、API、外部知识库等,增强模型的实际应用能力[^1]。 示例代码(基于LangChain的问答系统): ```python from langchain.llms import OpenAI from langchain.chains import RetrievalQA llm = OpenAI(temperature=0) qa_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff") response = qa_chain.run("如何配置LangChain的数据库连接?") print(response) ``` --- ### 2. **若涉及语言服务器协议(LSP)** 语言服务器协议(Language Server Protocol, LSP)由微软提出,用于统一代码编辑器与语言智能功能(如自动补全、错误检查)的通信标准。典型应用包括: - **VS Code的IntelliSense**:通过LSP实现多语言支持。 - **自定义语言支持**:为小众编程语言开发LSP服务器[^2]。 --- ### 3. **若为特定领域术语或拼写误差** 建议进一步确认以下可能性: - **LangManus是否为某企业内部工具**:需联系相关团队获取文档。 - **拼写修正**:如“LangManus”实际为“LangManas”(印度教术语,与IT无关)或“LangMesh”(网络架构术语)。 ---
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值