Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力

Meta 在 2025 年 4 月 5 日正式推出了其 Llama 4 系列 AI 模型,标志着原生多模态智能 AI 的新纪元。Llama 4 系列包括三个主要模型:Llama 4 Scout、Llama 4 Maverick 和 Llama 4 Behemoth。这些模型不仅代表了 Meta 在多模态 AI 领域的最新突破,同时也为开发者和企业提供了强大、开放且具有极高效率的 AI 工具。本文将详细分析 Llama 4 系列的技术创新、架构设计、训练方法、参数配置等方面的内容。
Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力


作者简介

猫头虎是谁?

大家好,我是 猫头虎,AI全栈工程师,某科技公司CEO,猫头虎技术团队创始人,也被大家称为虎哥。我目前是COC北京城市开发者社区主理人COC西安城市开发者社区主理人,以及云原生开发者社区主理人,在多个技术领域如云原生、前端、后端、运维和AI都有超多内容更新。

感谢全网三十多万粉丝的持续支持,我希望通过我的分享,帮助大家更好地掌握和使用各种技术产品,提升开发效率与体验。


作者名片 ✍️

  • 博主猫头虎
  • 全网全平台搜索关键词 猫头虎 即可与我建联
  • 作者微信号Libin9iOak
  • 作者公众号猫头虎技术团队
  • 更新日期2025年03月22日
  • 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!

加入我们AI共创团队 🌐

加入猫头虎的AI共创变现圈,一起探索编程世界的无限可能! 🚀


正文

Llama 4 系列概述

Llama 4 系列的推出旨在为用户提供更智能、更高效的 AI 模型,尤其是在多模态任务上,如图像和文本理解、推理、生成等。Meta 在设计 Llama 4 时,采用了混合专家(MoE)架构,并进一步优化了模型的上下文理解、推理能力和多模态能力。

Llama 4 系列的关键特点

  1. 多模态支持:Llama 4 系列是 Meta 推出的首批原生多模态 AI 模型,能够同时处理文本和视觉信息。通过采用早期融合(Early Fusion)方法,Llama 4 在一个统一的模型骨干中有效地将图像和文本融合,使得其能够处理更加复杂和多样化的输入数据。

  2. 混合专家架构(MoE):Llama 4 系列采用了混合专家架构,这种架构能在计算效率和质量上提供显著优势。模型中的每个 token 只会激活一部分专家模型,而不是整个模型的参数,这样能够显著减少计算负担,并且在有限的计算资源下提供更高的性能。

  3. 参数与性能提升:Llama 4 系列在多个性能指标上超越了前代的 Llama 模型,包括更大的上下文窗口、更长的输入序列支持和更强的视觉理解能力。Llama 4 Scout 和 Llama 4 Maverick 分别为 17 亿和 128 亿活跃参数模型,而 Llama 4 Behemoth 则拥有 2880 亿个活跃参数。

  4. 开源与开发者支持:Meta 强调开放源代码是推动创新的关键。Llama 4 系列的两个重要模型——Llama 4 Scout 和 Llama 4 Maverick,已经开放下载,支持开发者在自己的平台上进行多模态 AI 的构建。开发者还可以在 WhatsApp、Messenger、Instagram Direct 等平台上使用 Llama 4 构建的应用。

Llama 4 系列模型详细介绍

1. Llama 4 Scout

Llama 4 Scout 是 Llama 4 系列中的基础模型,但其表现依然十分出色,尤其是在多模态处理任务中的应用。Llama 4 Scout 适用于中小规模的推理任务,能够在单个 NVIDIA H100 GPU 上高效运行,并且支持强大的上下文处理能力。
Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力

参数配置
  • 活跃参数:17 亿个
  • 专家模型数量:16 个专家
  • 总参数:1090 亿个
  • 上下文窗口:10M tokens(相比 Llama 3 的 128K tokens,大大提升了上下文处理能力)
  • GPU 支持:支持单个 NVIDIA H100 GPU(通过 Int4 量化)

Llama 4 Scout 提供了业界领先的上下文窗口,能够处理极长的输入文本或多个文档。通过大幅提高上下文长度,Llama 4 Scout 在处理多文档总结、推理、代码理解等任务时表现优异。
Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力

技术亮点
  • 高效的 MoE 架构:通过混合专家架构,Scout 可以动态选择激活部分专家模型,而不是使用全部模型的参数,从而大幅提高了计算效率,尤其是在推理时。
  • 多模态能力:Llama 4 Scout 支持图像与文本的联合理解,能够在同一模型中处理图像和文本输入。例如,Llama 4 Scout 能够在视觉问题解答任务中,精确地将文本提示与图像中的对象关联,从而提供更准确的答案。
    Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力

2. Llama 4 Maverick

Llama 4 Maverick 是 Llama 4 系列中的更高效的多模态模型,具备 128 个专家的混合专家架构,支持更强的推理和编码能力。Maverick 适用于需要高性能推理的应用,尤其是在跨多个任务(如图像理解、推理和代码生成)时表现突出。
Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力

参数配置
  • 活跃参数:17 亿个
  • 专家模型数量:128 个专家
  • 总参数:4000 亿个
  • 上下文窗口:同样支持扩展至 10M tokens
  • 性能对比:在多个基准测试中,Llama 4 Maverick 超越了 GPT-4o 和 Gemini 2.0 Flash,特别是在推理、编程和多语言任务上表现突出。
    Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力
技术亮点
  • 性能优越:Llama 4 Maverick 在推理速度和计算效率方面优于大多数同类模型,能够在有限的硬件资源下提供卓越的性能。该模型在 LMArena 的实验性聊天版本中获得了 ELO 1417 的高评分,展示了其出色的聊天能力。
  • 适应性强:Maverick 适用于多种复杂任务,如编码生成、逻辑推理等,它能够在更少的参数下保持与大型模型相当的性能。通过采用先进的训练方法和混合专家架构,Maverick 在执行推理任务时能够动态选择最合适的专家模型,从而达到较低的延迟和更高的计算效率。

3. Llama 4 Behemoth

Llama 4 Behemoth 是目前 Meta 所发布的最强大模型,代表了 Llama 4 系列的巅峰。它具有 2880 亿个活跃参数,总参数量达到 2 万亿,专为需要超强推理能力和大规模计算资源的任务设计。
Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力

参数配置
  • 活跃参数:2880 亿个
  • 专家模型数量:16 个专家
  • 总参数:2 万亿个
  • 性能对比:Llama 4 Behemoth 在多个 STEM 基准测试中超越了 GPT-4.5、Claude Sonnet 3.7 和 Gemini 2.0 Pro,特别是在数学、推理和多语言理解方面。
技术亮点
  • 混合专家架构:Llama 4 Behemoth 使用了极为复杂的混合专家架构,能够在处理极为复杂的任务时实现最高效的计算。通过动态选择专家模型,它能够针对不同的任务需求做出最优选择,提供业内领先的推理和计算能力。
  • 训练与优化:Llama 4 Behemoth 的训练采用了 Meta 的创新技术,包括 MetaP(一个用于设置模型超参数的训练方法)和 FP8 精度,这些技术显著提高了训练效率和模型质量。

Llama 4 的技术架构与训练方法

1. 混合专家架构(MoE)

Llama 4 系列的核心技术创新之一是采用了混合专家(Mixture of Experts, MoE)架构。在 MoE 架构中,只有部分参数在训练和推理过程中被激活,而不是激活整个模型。这种方法能够提高计算效率,减少资源消耗。

2. 早期融合(Early Fusion)

Llama 4 模型采用了早期融合(Early Fusion)方法,在同一模型中联合训练文本、图像和视频数据。这使得 Llama 4 在处理多模态输入时,比传统的模型更加高效,能够实现更加精确的图像和文本理解。

3. 数据集与训练技术

Llama 4 系列使用了更为庞大的数据集进行训练,包括来自 200 种语言的海量文本数据。为了提升多语言能力,Llama 4 在多语言数据集的训练中表现出色,能够处理比前代模型更多种类的语言。此外,Meta 还使用了 FP8 精度和 32K GPUs 来加速训练。

4. 长上下文扩展

Llama 4 系列提供了一个前所未有的 10M token 上下文窗口,显著增强了模型处理长文本和复杂任务的能力。特别是 Llama 4 Scout,在处理多个文档和长篇文本时,表现得尤为出色。

安全与偏见控制

Meta 强调,Llama 4 系列在开发过程中采取了严格的安全措施,确保 AI 模型在使用过程中能够避免恶意输入和输出,保护用户的隐私和安全。同时,Meta 在模型中加入了多个防止偏见的机制,确保模型对社会敏感话题持中立立场。
Meta推出Llama 4系列AI模型,包括Scout、Maverick和Behemoth三款产品,具备出色视觉理解能力

结语

Meta 推出的 Llama 4 系列不仅是多模态 AI 领域的重要突破,也是 AI 模型技术不断演进的标志。通过引入混合专家架构、早期融合、多语言支持和长上下文等创新,Llama 4 为开发者提供了一个强大、开放且高效的 AI 工具。随着 Llama 4 Behemoth 的逐步完善,未来 Llama 4 系列有望在更多领域和任务中提供卓越的性能和智能体验。

文末粉丝福利


👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击文末名片获取更多信息。我是猫头虎,期待与您的交流! 🦉💬

GO ! GO ! Go !

入口:https://gitcode.com/qq_44866828/CSDNWF


联系我与版权声明 📩

  • 联系方式
    • 猫头虎微信号: Libin9iOak
    • 万粉变现经纪人微信号:CSDNWF
    • 公众号: 猫头虎技术团队
  • 版权声明
    本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页

点击✨⬇️下方名片⬇️✨,加入猫头虎AI共创社群,交流AI新时代变现的无限可能。一起探索科技的未来,共同成长。🚀

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值