【数学模型】基于Volterra理论的捕食模型

摘要

自然界中存在着一种有趣的基本捕食系统,两个种群之间以既相互依存又相互制约的方式生活,在生态学中我们称其为食饵——捕食者系统。通过研究种群数量的变化对于合理利用资源及保护生态系统有重要意义,因此本文分两步对Volterra食饵——捕食者模型所描述的现象进行分析。首先,利用MATLAB求微分方程的数值解,通过对数值结果和图形的观察,猜测它的解析解的构造;然后,从理论上研究其平衡点及相轨线的形状,验证前面的猜测。

问题重述

假设某区域有黄鼠狼和老鼠两个物种,且老鼠有足够的食物,黄鼠狼捕食老鼠,试建立黄鼠狼和老鼠数量之间关系的微分方程。
注:建议考虑两个物种的出生和死亡率、黄鼠狼对老鼠的依赖关系,以及同一个物种之间的竞争关系等。
这是关于黄鼠狼和老鼠数量的两个因变量与时间t的函数关系构成的两个一阶微分方程的方程组。

模型假设

1.假设是一个包括黄鼠狼和老鼠两个种群生态系统,黄鼠狼靠老鼠而生存,系统与外界没有种群交换关系。
2.假设资源丰富,环境适宜,老鼠独立生存时数量成指数增长。
3.假设黄鼠狼只有老鼠这一种食物来源。

符号说明

符号说明
r 老鼠独立生存时增长率
x(t) 老鼠数量
y(t) 黄鼠狼数量
a 反应黄鼠狼掠取老鼠能力的比例系数
d 黄鼠狼独立生存的死亡率
b 老鼠对黄鼠狼的供养能力

问题分析

老鼠和黄鼠狼在时刻t的数量分别记作x(t),y(t),假设当老鼠独立生存时以指数规律增长,(相对)增长率为r,即而黄鼠狼的存在使老鼠的增长率减少,设减少率与黄鼠狼数量成正比,于是x(t)满足方程
在这里插入图片描述

比例系数a反映黄鼠狼掠取老鼠的能力。
假设黄鼠狼只有老鼠这一种食物来源,黄鼠狼离开老鼠将无法生存,设它独自存在时死亡率为d,即,而老鼠的存在为黄鼠狼提供了食物,相当于使黄鼠狼的死亡率降低,且促使其增长,设黄鼠狼增长率与食饵数量成正比,于是y(t)满足
在这里插入图片描述
比例系数b反映食饵对捕食者的供养能力
方程(1),(2)是在自然环境中食饵和捕食者之间依存和制约的关系,这里没有考
虑种群自身的阻滞增长作用,是Volterra提出的最简单的模型

模型建立求解

记食饵和捕食者的初始数量分别为:
x(0)=x0,y(0)=y0 (3)
为求微分方程(1),(2)满足初始条件(3)的数值解x(t),y(t)(并作图)及相轨线y(x),设r=1,d=0.5,a=0.1,b=0.02,x0=25,y0=2,用MATLAB软件编程计算,可得x(t) y(t)及相轨线y(x)如图1、图2(数值结果从略)。可以猜测,x(t),y(t)是周期函数,与此相应地,相轨线y(x)是封闭曲线。从数值解近似地定出周期为10.7,x的最大、最小值分别为99.3和2.0,y的最大、最小值分别为28.4和2.0,并且用数值积分容易算出x(t),y(t)在一个周期的平均值为=23, 。

在这里插入图片描述
在这里插入图片描述

模型的评价

尽管Volterra模型理论上可以解决一些捕食者与被捕食者数量关系的问题,但他作为近似反应现实对象的数学模型仍然存在局限性。
许多生态学家都指出,多数捕食者和被捕食者都观察不vloterra模型显示的周期性震荡,需要在vloterra模型中考虑自身阻滞作用的logistic项目。
另外,一些生态学家认为,自然界里长期存在的呈周期变化的生态系应该是结构稳定的,生态系统受到不可避免的干扰和后,其内部制约作用会使系统自动恢复原来的状态,而volterra模型描述的周期变化状态却不是结构稳定的,而为了得到反映周期变化的结构稳定的模型,要用到极限环的概念

参考文献

[1] 姜启源,谢金星.实用数学数学建模(基础篇).北京:高等教育出版社,2014.
[2] 唐静波,胡智渊,张彦琼,任力锋.确定Lotka-Volterra生态系统模型高精度参数的研究[J].数学的实践与认识,2007(14):77-82.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在下方方

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值