稳定状态模型 (三):Volterra 模型

本文是稳定状态模型系列博文,聚焦Volterra模型。介绍了该模型的形成,它是为解释一战期间地中海渔场鱼类比例变化而建,呈现了食饵与捕食者的制约关系。还包含模型分析及相关习题,如树木砍伐策略、种群依存模型等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


稳定状态模型系列博文

稳定状态模型 (一): 微分方程稳定性理论简介 :自治系统、动力系统相平面、相图、轨线 、  奇点、孤立奇点

稳定状态模型 (二):再生资源的管理和开发 :资源增长模型 、资源开发模型 、经济效益模型、 种群的相互竞争模型

稳定状态模型 (三):Volterra 模型

 


目录

1  形成模型                   2  模型分析                  习 题


意大利生物学家 D'Ancona 曾致力于鱼类种群相互制约关系的研究,在研究过程中 他无意中发现了第一次世界大战期间地中海各港口捕获的几种鱼类占捕获总量百分比 的资料,从这些资料中他发现各种软骨掠肉鱼,如鲨鱼、鲢鱼等我们称之为捕食者的一 些不是很理想的鱼占总渔获量的百分比,在 1914~1923 年期间,意大利阜姆港收购的 捕食者所占的比例有明显的增加:

他知道,捕获的各种鱼的比例基本上代表了地中海渔场中各种鱼类的比例。战争中捕获 量大幅度下降,当然使渔场中食用鱼(食饵)增加,以此为生的鲨鱼也随之增加。但是 捕获量的下降为什么会使鲨鱼的比例增加,即对捕食者而不是对食饵有利呢?他无法解 释这个现象,于是求助于著名的意大利数学家 V. Volterra,希望建立一个食饵—捕食者 系统的数学模型,定量地回答这个问题。

1  形成模型

 方程(17)和(18)是在没有人工捕获情况下自然环境中食饵与捕食者之间的制约 关系,是 Volterra 提出的最简单的模型。这个模型没有引入竞争项。

2  模型分析

习 题

1. 单棵树木的商品价值V 是由这棵树能够生产的木材体积和质量所决定的。显然 V = V(t) 依赖于树木的年龄 t 。假设曲线V(t) 已知, c 为树木砍伐成本。试给出砍伐 树木(更确切地说砍伐相同年龄的树木)的最优年龄。如果考虑到森林轮种问题,即一 旦树木从某一处砍掉,这块土地便可以种植新树,假定各轮种周期具有相等的长度,试 建模讨论最优砍伐轮种的森林管理策略的问题。

2. 如果两个种群都能独立生存,共处时又能相互提供食物,试建立种群依存模型 并讨论平衡点及稳定性,解释稳定的意义。

3. 如果两个种群都不能独立生存,但共处时可以相互提供食物,试建模以讨论共 处的可能性.。

4. 如果在食饵—捕食者系统中,捕食者掠夺的对象只是成年的食饵,而未成年的 食饵因体积太小免遭捕获。在适当的假设下建立这三者之间关系的模型,求平衡点。


稳定状态模型系列博文

稳定状态模型 (一): 微分方程稳定性理论简介 :自治系统、动力系统相平面、相图、轨线 、  奇点、孤立奇点

稳定状态模型 (二):再生资源的管理和开发 :资源增长模型 、资源开发模型 、经济效益模型、 种群的相互竞争模型

稳定状态模型 (三):Volterra 模型


 

### Lotka-Volterra模型稳定性分析 #### 背景介绍 Lotka-Volterra模型是一种经典的捕食者-猎物相互作用模型,在生物数学建模中广泛应用。该模型描述了两个物种之间的动态关系,其中一个作为被捕食物种(猎物),另一个作为捕食物种。 #### 数学表达式 Lotka-Volterra方程组可以表示如下: \[ \frac{dx}{dt} = \alpha x - \beta xy \\ \frac{dy}{dt} = \delta xy - \gamma y \] 这里 \(x\) 表示猎物数量,\(y\) 表示捕食者数量;参数 \(\alpha, \beta, \gamma,\) 和 \(\delta\) 分别代表猎物增长率、捕食效率、捕食死亡率以及由捕食带来的增长因子[^1]。 #### 稳定点求解 为了找到系统的稳态点,令上述微分方程等于零并联立求解得到可能存在的平衡状态: 当 \(x=0,y=0\) 或者 \(x=\frac{\gamma}{\delta}, y=\frac{\alpha}{\beta}\) 前者对应于灭绝情况下的平凡解,后者则是非零的共存状态——即所谓的内部均衡点。 #### 局部稳定性分析 通过线性化处理,计算雅可比矩阵并在各个固定点处评估其特征值来判断局部稳定性。对于内部均衡点而言,如果所有实数部分均为负,则表明此状态下系统是稳定的;反之则不稳定。 具体来说,针对内部均衡点 (\(x^*, y^*\)) 的雅克比行列式为: \[ J(x^*, y^*) = \begin{pmatrix} -\beta y^* & -\beta x^*\\ \delta y^* & \delta x^*-γ \end{pmatrix} = \begin{pmatrix} -\beta \cdot \frac{\alpha}{\beta} & -\beta \cdot \frac{\gamma}{\delta}\\ \delta \cdot \frac{\alpha}{\beta} & 0 \end{pmatrix} \] 进一步简化得: \[J(x^*, y^*) = \begin{pmatrix} -\alpha& -\gamma\\ \delta \cdot \frac{\alpha}{\beta}& 0 \end{pmatrix} \] 此时可以根据迹(trace)和行列式的正负性质判定稳定性条件:若 trace<0 并且 det>0 则说明该点为中心点或螺旋吸引子;而trace>0 或det<0意味着它是鞍点或者是源节点形式。 #### MATLAB实现案例 下面给出一段简单的MATLAB代码用于数值模拟Lotka-Volterra模型及其相轨迹图绘制: ```matlab function lotka_volterra_simulation() % 参数设定 alpha = 2; beta = 0.8; gamma = 1.2; delta = 0.6; tspan = [0 15]; % 时间范围 initial_conditions = [10; 5]; % 初始条件 options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]); % 解ODEs [t,x] = ode45(@(t,X) lv_ode(t,X,alpha,beta,gamma,delta), ... tspan,initial_conditions,options); figure(); subplot(2,1,1); plot(t,x(:,1),'-',t,x(:,2),'-.'); legend('Prey','Predator'); title('Time Series Plot'); subplot(2,1,2); plot(x(:,1),x(:,2)); xlabel('Prey Population'); ylabel('Predator Population'); title('Phase Portrait'); end % 定义LV ODE函数 function dxdt = lv_ode(~,X,alpha,beta,gamma,delta) prey = X(1); predator = X(2); dprey_dt = (alpha * prey) - (beta * prey * predator); dpredator_dt = (-gamma * predator) + (delta * prey * predator); dxdt = [dprey_dt ; dpredator_dt]; end ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值