捕食者猎物模型

一、建立函数关系

1、假设

在自然群落中,狼和兔子的关系为“捕食者-猎物”。设兔子的种群大小 N 兔 = x N_兔=x N=x,狼的种群大小 N 狼 = y N_狼=y N=y,且兔子的种群扩张为非密度制约。

当群落中没有狼,兔子的增长率为 a a a,兔子的种群增长模型为:
x ′ = a x x'=ax x=ax
当群落中没有兔子时,狼群的衰退率为 c c c,狼的种群衰退模型为:
y ′ = − c y y'=-cy y=cy

2、捕食者——猎物模型

如果在群落中,狼与兔子相遇,且捕食成功并转化为自身生物量的效率为 η \eta η;另有兔子被捕率为 b b b。则最终在只考虑二者关系的前提下,二者的种群变化可表示为:

{ 兔子: x ′ = a x − b x y 狼: y ′ = − c y + η x y \begin{cases} 兔子:&x'=ax-bxy\\ 狼:&y'=-cy+\eta xy \end{cases} {兔子:狼:x=axbxyy=cy+ηxy

二、函数性质

x ′ x' x y ′ y' y为0,可求得方程组的均衡解为:

{ y = a b x = c η \begin{cases} y=\frac{a}{b}\\ x=\frac{c}{\eta} \end{cases} {y=bax=ηc

函数关系可表示为:
在这里插入图片描述

1、函数形状

进一步讨论函数性质,最终可得三种可能的情形:收敛与一个稳定点、闭轨函数、无法稳定共存。
在这里插入图片描述

为了证明函数的最终形状,将两式相除得:

x ′ y ′ = − c x + η x y a y − b x y x ′ ( a y − b x y ) = y ′ ( − c x + η x y ) \begin{aligned} \frac{x'}{y'}&=\frac{-cx+\eta xy}{ay-bxy}\\ x'(ay-bxy)&=y'(-cx+\eta xy) \end{aligned} yxx(aybxy)=aybxycx+ηxy=y(cx+ηxy)

分离变量得:

a x ′ x − b x ′ = η y ′ − c y ′ y \frac{ax'}{x}-bx'=\eta y'-\frac{cy'}{y} xaxbx=ηyycy

a ( ln x ) ′ − b x ′ = η y ′ − c ( ln y ) ′ a(\text{ln}x)'-bx'=\eta y'-c(\text{ln}y)' a(lnx)bx=ηyc(lny)

移项得:

a ( ln x ) ′ − b x ′ − η y ′ + c ( ln y ) ′ = 0 a ln x − b x − η y + c ln y = k ln x a − b x − η y + ln y c = k ( ln x a + ln y c ) = b x + η y + k a(\text{ln}x)'-bx'-\eta y'+c(\text{ln}y)'=0\\ a\text{ln}x-bx-\eta y+c\text{ln}y=k\\ \text{ln}x^a-bx-\eta y+\text{ln}y^c=k\\ (\text{ln}x^a+\text{ln}y^c)=bx+\eta y+k a(lnx)bxηy+c(lny)=0alnxbxηy+clny=klnxabxηy+lnyc=k(lnxa+lnyc)=bx+ηy+k

e e e 的幂得:

e ln ( x a ⋅ y c ) = e b x + η y + k e^{\text{ln}(x^a\cdot y^c)}=e^{bx+\eta y+k} eln(xayc)=ebx+ηy+k

即:

x a ⋅ y c = e b x ⋅ e η y ⋅ e k x^{a}\cdot y^{c}=e^{bx}\cdot e^{\eta y}\cdot e^k xayc=ebxeηyek

令常数 e k = θ e^{k}=\theta ek=θ 得:

( x a ⋅ e − b x ) ( y c ⋅ e − η y ) = θ (x^{a}\cdot e^{-bx})(y^{c}\cdot e^{-\eta y})=\theta (xaebx)(yceηy)=θ

通过上式可知,当 x x x y y y 其中之一确定时,最多可解得另一值的两个根,且当 x = b a x=\frac{b}{a} x=ab y = c η y=\frac{c}{\eta} y=ηc 时,对应的另一值只有一个根。说明过函数图形分别做 x x x 轴或 y y y 轴的垂直线,最多与函数图形存在两个交点,所以此方程组的函数图像是一个逆时针的闭轨
在这里插入图片描述

2、周期性

周期函数即:

f ( t + n T ) = f ( t ) , n ∈ N ∗ f(t+nT)=f(t),n\in N^* f(t+nT)=f(t)nN

在上文中,我们通过:

( x a ⋅ e − b x ) ( y c ⋅ e − η y ) = θ (x^{a}\cdot e^{-bx})(y^{c}\cdot e^{-\eta y})=\theta (xaebx)(yceηy)=θ

证明方程组的函数图像是一个逆时针的闭轨,即说明函数有周期性。那么,在每一次的周期循环中, x x x y y y 的平均量 x ‾ \overline x x y ‾ \overline y y 是多少?

对此,可提出对 x ‾ \overline x x y ‾ \overline y y 的两种求解方案:
(1)获得关于 x x x 的显性表达,如何求积分。但是, x x x 的值与 y y y 有关,求解难度较大。
(2)只关注 x x x y y y 方程。
在这里插入图片描述
通过求出(上图右边)曲线下方的面积再比上周期 T T T 即得 x ‾ \overline x x y ‾ \overline y y

即:

x ′ = a x − b x y x'=ax-bxy x=axbxy

分离变量得:

x ′ x = a − b y \frac{x'}{x}=a-by xx=aby

因为 ( ln ⁡ x ) ′ = 1 x (\ln x)'=\frac{1}{x} (lnx)=x1,所以:

d ln ⁡ x d t = a − b y \frac{\text{d}\ln x}{\text{d}t}=a-by dtdlnx=aby

两边取定积分得:

∫ 0 T d ln ⁡ x d t   d t = ∫ 0 T ( a − b y )   d t \int_0^T {\frac{\text{d}\ln x}{\text{d}t}} \,{\rm d}t=\int_0^T {(a-by)}\,{\rm d}t 0Tdtdlnxdt=0T(aby)dt

即:

ln ⁡ x ( T ) − ln ⁡ x ( 0 ) = a T − b ∫ 0 T ( y )   d t \ln x(T)-\ln x(0)=aT-b\int_0^T{(y)}\,{\rm d}t lnx(T)lnx(0)=aTb0T(y)dt

由周期函数的定义 x ( T ) = x ( 0 ) x(T)=x(0) x(T)=x(0) 可解得:

1 T ∫ 0 T ( y ) d t = a b \frac{1}{T}\int^T_0(y){\rm d}t=\frac{a}{b} T10T(y)dt=ba

所以 y ‾ = a b \overline y=\frac{a}{b} y=ba,同理可得 x ‾ = c η \overline x=\frac{c}{\eta} x=ηc

三、进一步推广

整理一下已经得到的结果,函数关系式:

{ x ′ = a x − b x y y ′ = − c y + η x y \begin{cases} &x'=ax-bxy\\ &y'=-cy+\eta xy \end{cases} {x=axbxyy=cy+ηxy

在一个周期 T T T 中,捕食者和猎物的平均数量:

{ x ‾ = c η y ‾ = a b \begin{cases} \overline x=\frac{c}{\eta}\\ \overline y=\frac{a}{b} \end{cases} {x=ηcy=ba

此时,如果持续的捕捉 y y y)或兔子 x x x)其中之一,另一种群会如何变化?通过推理,我们可以大致的知道其种群动态的变化规律,但无法获得最终结果,为次做进一步的验证。

1、持续捕捉兔子

假设以 λ 、 μ \lambda、\mu λμ 的速度持续的人工捕捉兔子,且保证兔子在此速度下可以继续繁衍来满足狼群,则可得函数关系:

{ x ′ = ( a − λ ) x − b x y ′ = − c y + ( η − μ ) x y \begin{cases} x'=(a-\lambda)x-bx\\ y'=-cy+(\eta-\mu)xy \end{cases} {x=(aλ)xbxy=cy+(ημ)xy

此时求得的 x ‾ 、 y ‾ \overline x、\overline y xy 为:

{ x ‾ = a − λ b y ‾ = c η − μ \begin{cases} \overline x=\frac{a-\lambda}{b}\\ \overline y=\frac{c}{\eta-\mu} \end{cases} {x=baλy=ημc

说明,在持续捕捉兔子的情况下,兔子的种群最终会扩张,而狼群最终会收缩!

2、持续捕捉狼

同理,以 λ 、 μ \lambda、\mu λμ 的速度持续的人工捕捉狼:

{ x ′ = a x − ( b − λ ) x y y ′ = − ( c + μ ) y + η x y \begin{cases} x'=ax-(b-\lambda)xy\\ y'=-(c+\mu)y+\eta xy \end{cases} {x=ax(bλ)xyy=(c+μ)y+ηxy

x ‾ 、 y ‾ \overline x、\overline y xy 为:

{ x ‾ = μ η y ‾ = a b − λ \begin{cases} \overline x=\frac{\mu}{\eta}\\ \overline y=\frac{a}{b-\lambda} \end{cases} {x=ημy=bλa

说明,在持续捕捉狼的情况下,狼群和兔子种群最终都会有所扩张!

四、捕鱼数据

自1914年至1923,一直有科学家在记录一项捕鱼数据:

时间比率( 肉食性鱼的生物量 植食或滤食性鱼的生物量 \frac{肉食性鱼的生物量}{植食或滤食性鱼的生物量} 植食或滤食性鱼的生物量肉食性鱼的生物量
191411.9
191521.4
191622.1
191721.2
191836.4
191927.3
192016.3
192115.9
192214.8
192310.7

可发现从1915年到1918年间,肉食性鱼的生物量占比明显有所增加。有解释认为,是一战期间(1914~1918年)由于人们忙于战事,减少了对鱼的捕捞,导致捕食者鱼的渔获占比上升,但是,具体是如何影响比率的呢?

是否可以以上文的模型来解释这一现象呢?

假设:

{ 猎物鱼: x ′ = a x − b x y 捕食者鱼: y ′ = − c y + η x y \begin{cases} 猎物鱼:&x'=ax-bxy\\ 捕食者鱼:&y'=-cy+\eta xy \end{cases} {猎物鱼:捕食者鱼:x=axbxyy=cy+ηxy

周期内均值:

{ x ‾ = c η y ‾ = a b \begin{cases} \overline x=\frac{c}{\eta}\\ \overline y=\frac{a}{b} \end{cases} {x=ηcy=ba

由于猎物鱼被捕获减少(正常情况下,人们更倾向于捕捉猎物鱼,但是由于一战导致猎物鱼被捕减少),即猎物鱼的增长速率上升(同样以 λ 、 μ \lambda、\mu λμ 表示增长率),得:

{ x ′ = ( a + λ ) x − b x y y ′ = − c y + ( η + μ ) x y \begin{cases} &x'=(a+\lambda)x-bxy\\ &y'=-cy+(\eta +\mu)xy \end{cases} {x=(a+λ)xbxyy=cy+(η+μ)xy

可得周期内均值:

{ x ‾ = c η + μ y ‾ = a + λ b \begin{cases} \overline x=\frac{c}{\eta+\mu}\\ \overline y=\frac{a+\lambda}{b} \end{cases} {x=η+μcy=ba+λ

说明,由于一战人们忙于战事,减少了对猎物鱼的捕捉,最终导致猎物鱼减少,而捕食者鱼则增加,最终导致捕获的鱼中,捕食者鱼的占比更高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Odd_guy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值