一、建立函数关系
1、假设
在自然群落中,狼和兔子的关系为“捕食者-猎物”。设兔子的种群大小 N 兔 = x N_兔=x N兔=x,狼的种群大小 N 狼 = y N_狼=y N狼=y,且兔子的种群扩张为非密度制约。
当群落中没有狼,兔子的增长率为
a
a
a,兔子的种群增长模型为:
x
′
=
a
x
x'=ax
x′=ax
当群落中没有兔子时,狼群的衰退率为
c
c
c,狼的种群衰退模型为:
y
′
=
−
c
y
y'=-cy
y′=−cy
2、捕食者——猎物模型
如果在群落中,狼与兔子相遇,且捕食成功并转化为自身生物量的效率为 η \eta η;另有兔子被捕率为 b b b。则最终在只考虑二者关系的前提下,二者的种群变化可表示为:
{ 兔子: x ′ = a x − b x y 狼: y ′ = − c y + η x y \begin{cases} 兔子:&x'=ax-bxy\\ 狼:&y'=-cy+\eta xy \end{cases} {兔子:狼:x′=ax−bxyy′=−cy+ηxy
二、函数性质
令 x ′ x' x′和 y ′ y' y′为0,可求得方程组的均衡解为:
{ y = a b x = c η \begin{cases} y=\frac{a}{b}\\ x=\frac{c}{\eta} \end{cases} {y=bax=ηc
函数关系可表示为:
1、函数形状
进一步讨论函数性质,最终可得三种可能的情形:收敛与一个稳定点、闭轨函数、无法稳定共存。
为了证明函数的最终形状,将两式相除得:
x ′ y ′ = − c x + η x y a y − b x y x ′ ( a y − b x y ) = y ′ ( − c x + η x y ) \begin{aligned} \frac{x'}{y'}&=\frac{-cx+\eta xy}{ay-bxy}\\ x'(ay-bxy)&=y'(-cx+\eta xy) \end{aligned} y′x′x′(ay−bxy)=ay−bxy−cx+ηxy=y′(−cx+ηxy)
分离变量得:
a x ′ x − b x ′ = η y ′ − c y ′ y \frac{ax'}{x}-bx'=\eta y'-\frac{cy'}{y} xax′−bx′=ηy′−ycy′
a ( ln x ) ′ − b x ′ = η y ′ − c ( ln y ) ′ a(\text{ln}x)'-bx'=\eta y'-c(\text{ln}y)' a(lnx)′−bx′=ηy′−c(lny)′
移项得:
a ( ln x ) ′ − b x ′ − η y ′ + c ( ln y ) ′ = 0 a ln x − b x − η y + c ln y = k ln x a − b x − η y + ln y c = k ( ln x a + ln y c ) = b x + η y + k a(\text{ln}x)'-bx'-\eta y'+c(\text{ln}y)'=0\\ a\text{ln}x-bx-\eta y+c\text{ln}y=k\\ \text{ln}x^a-bx-\eta y+\text{ln}y^c=k\\ (\text{ln}x^a+\text{ln}y^c)=bx+\eta y+k a(lnx)′−bx′−ηy′+c(lny)′=0alnx−bx−ηy+clny=klnxa−bx−ηy+lnyc=k(lnxa+lnyc)=bx+ηy+k
取 e e e 的幂得:
e ln ( x a ⋅ y c ) = e b x + η y + k e^{\text{ln}(x^a\cdot y^c)}=e^{bx+\eta y+k} eln(xa⋅yc)=ebx+ηy+k
即:
x a ⋅ y c = e b x ⋅ e η y ⋅ e k x^{a}\cdot y^{c}=e^{bx}\cdot e^{\eta y}\cdot e^k xa⋅yc=ebx⋅eηy⋅ek
令常数 e k = θ e^{k}=\theta ek=θ 得:
( x a ⋅ e − b x ) ( y c ⋅ e − η y ) = θ (x^{a}\cdot e^{-bx})(y^{c}\cdot e^{-\eta y})=\theta (xa⋅e−bx)(yc⋅e−ηy)=θ
通过上式可知,当
x
x
x 或
y
y
y 其中之一确定时,最多可解得另一值的两个根,且当
x
=
b
a
x=\frac{b}{a}
x=ab 或
y
=
c
η
y=\frac{c}{\eta}
y=ηc 时,对应的另一值只有一个根。说明过函数图形分别做
x
x
x 轴或
y
y
y 轴的垂直线,最多与函数图形存在两个交点,所以此方程组的函数图像是一个逆时针的闭轨。
2、周期性
周期函数即:
f ( t + n T ) = f ( t ) , n ∈ N ∗ f(t+nT)=f(t),n\in N^* f(t+nT)=f(t),n∈N∗
在上文中,我们通过:
( x a ⋅ e − b x ) ( y c ⋅ e − η y ) = θ (x^{a}\cdot e^{-bx})(y^{c}\cdot e^{-\eta y})=\theta (xa⋅e−bx)(yc⋅e−ηy)=θ
证明方程组的函数图像是一个逆时针的闭轨,即说明函数有周期性。那么,在每一次的周期循环中, x x x 和 y y y 的平均量 x ‾ \overline x x 和 y ‾ \overline y y 是多少?
对此,可提出对
x
‾
\overline x
x、
y
‾
\overline y
y 的两种求解方案:
(1)获得关于
x
x
x 的显性表达,如何求积分。但是,
x
x
x 的值与
y
y
y 有关,求解难度较大。
(2)只关注
x
x
x 或
y
y
y 方程。
通过求出(上图右边)曲线下方的面积再比上周期
T
T
T 即得
x
‾
\overline x
x、
y
‾
\overline y
y 。
即:
x ′ = a x − b x y x'=ax-bxy x′=ax−bxy
分离变量得:
x ′ x = a − b y \frac{x'}{x}=a-by xx′=a−by
因为 ( ln x ) ′ = 1 x (\ln x)'=\frac{1}{x} (lnx)′=x1,所以:
d ln x d t = a − b y \frac{\text{d}\ln x}{\text{d}t}=a-by dtdlnx=a−by
两边取定积分得:
∫ 0 T d ln x d t d t = ∫ 0 T ( a − b y ) d t \int_0^T {\frac{\text{d}\ln x}{\text{d}t}} \,{\rm d}t=\int_0^T {(a-by)}\,{\rm d}t ∫0Tdtdlnxdt=∫0T(a−by)dt
即:
ln x ( T ) − ln x ( 0 ) = a T − b ∫ 0 T ( y ) d t \ln x(T)-\ln x(0)=aT-b\int_0^T{(y)}\,{\rm d}t lnx(T)−lnx(0)=aT−b∫0T(y)dt
由周期函数的定义 x ( T ) = x ( 0 ) x(T)=x(0) x(T)=x(0) 可解得:
1 T ∫ 0 T ( y ) d t = a b \frac{1}{T}\int^T_0(y){\rm d}t=\frac{a}{b} T1∫0T(y)dt=ba
所以 y ‾ = a b \overline y=\frac{a}{b} y=ba,同理可得 x ‾ = c η \overline x=\frac{c}{\eta} x=ηc
三、进一步推广
整理一下已经得到的结果,函数关系式:
{ x ′ = a x − b x y y ′ = − c y + η x y \begin{cases} &x'=ax-bxy\\ &y'=-cy+\eta xy \end{cases} {x′=ax−bxyy′=−cy+ηxy
在一个周期 T T T 中,捕食者和猎物的平均数量:
{ x ‾ = c η y ‾ = a b \begin{cases} \overline x=\frac{c}{\eta}\\ \overline y=\frac{a}{b} \end{cases} {x=ηcy=ba
此时,如果持续的捕捉狼( y y y)或兔子( x x x)其中之一,另一种群会如何变化?通过推理,我们可以大致的知道其种群动态的变化规律,但无法获得最终结果,为次做进一步的验证。
1、持续捕捉兔子
假设以 λ 、 μ \lambda、\mu λ、μ 的速度持续的人工捕捉兔子,且保证兔子在此速度下可以继续繁衍来满足狼群,则可得函数关系:
{ x ′ = ( a − λ ) x − b x y ′ = − c y + ( η − μ ) x y \begin{cases} x'=(a-\lambda)x-bx\\ y'=-cy+(\eta-\mu)xy \end{cases} {x′=(a−λ)x−bxy′=−cy+(η−μ)xy
此时求得的 x ‾ 、 y ‾ \overline x、\overline y x、y 为:
{ x ‾ = a − λ b y ‾ = c η − μ \begin{cases} \overline x=\frac{a-\lambda}{b}\\ \overline y=\frac{c}{\eta-\mu} \end{cases} {x=ba−λy=η−μc
说明,在持续捕捉兔子的情况下,兔子的种群最终会扩张,而狼群最终会收缩!
2、持续捕捉狼
同理,以 λ 、 μ \lambda、\mu λ、μ 的速度持续的人工捕捉狼:
{ x ′ = a x − ( b − λ ) x y y ′ = − ( c + μ ) y + η x y \begin{cases} x'=ax-(b-\lambda)xy\\ y'=-(c+\mu)y+\eta xy \end{cases} {x′=ax−(b−λ)xyy′=−(c+μ)y+ηxy
得 x ‾ 、 y ‾ \overline x、\overline y x、y 为:
{ x ‾ = μ η y ‾ = a b − λ \begin{cases} \overline x=\frac{\mu}{\eta}\\ \overline y=\frac{a}{b-\lambda} \end{cases} {x=ημy=b−λa
说明,在持续捕捉狼的情况下,狼群和兔子种群最终都会有所扩张!
四、捕鱼数据
自1914年至1923,一直有科学家在记录一项捕鱼数据:
时间 | 比率( 肉食性鱼的生物量 植食或滤食性鱼的生物量 \frac{肉食性鱼的生物量}{植食或滤食性鱼的生物量} 植食或滤食性鱼的生物量肉食性鱼的生物量) |
---|---|
1914 | 11.9 |
1915 | 21.4 |
1916 | 22.1 |
1917 | 21.2 |
1918 | 36.4 |
1919 | 27.3 |
1920 | 16.3 |
1921 | 15.9 |
1922 | 14.8 |
1923 | 10.7 |
可发现从1915年到1918年间,肉食性鱼的生物量占比明显有所增加。有解释认为,是一战期间(1914~1918年)由于人们忙于战事,减少了对鱼的捕捞,导致捕食者鱼的渔获占比上升,但是,具体是如何影响比率的呢?
是否可以以上文的模型来解释这一现象呢?
假设:
{ 猎物鱼: x ′ = a x − b x y 捕食者鱼: y ′ = − c y + η x y \begin{cases} 猎物鱼:&x'=ax-bxy\\ 捕食者鱼:&y'=-cy+\eta xy \end{cases} {猎物鱼:捕食者鱼:x′=ax−bxyy′=−cy+ηxy
周期内均值:
{ x ‾ = c η y ‾ = a b \begin{cases} \overline x=\frac{c}{\eta}\\ \overline y=\frac{a}{b} \end{cases} {x=ηcy=ba
由于猎物鱼被捕获减少(正常情况下,人们更倾向于捕捉猎物鱼,但是由于一战导致猎物鱼被捕减少),即猎物鱼的增长速率上升(同样以 λ 、 μ \lambda、\mu λ、μ 表示增长率),得:
{ x ′ = ( a + λ ) x − b x y y ′ = − c y + ( η + μ ) x y \begin{cases} &x'=(a+\lambda)x-bxy\\ &y'=-cy+(\eta +\mu)xy \end{cases} {x′=(a+λ)x−bxyy′=−cy+(η+μ)xy
可得周期内均值:
{ x ‾ = c η + μ y ‾ = a + λ b \begin{cases} \overline x=\frac{c}{\eta+\mu}\\ \overline y=\frac{a+\lambda}{b} \end{cases} {x=η+μcy=ba+λ
说明,由于一战人们忙于战事,减少了对猎物鱼的捕捉,最终导致猎物鱼减少,而捕食者鱼则增加,最终导致捕获的鱼中,捕食者鱼的占比更高。