形态学 - 开运算和闭运算

本文介绍了形态学中的开运算和闭运算,用于图像处理。开运算通过先腐蚀后膨胀的方式平滑物体轮廓、断开狭窄连接,闭运算则能弥合断裂、填补小孔。文中提供了Python代码示例,展示如何应用这些操作,并展示了处理结果。
摘要由CSDN通过智能技术生成

目录

1. 介绍

2. 代码实现 

2.1 开运算

2.2 闭运算


1. 介绍

膨胀和腐蚀操作都会有一个通病,就是会改变原目标的大小

开运算:先对目标腐蚀在膨胀

开运算能够平滑物体的轮廓、断开狭窄的狭颈、消除细长的突出物等等

开运算的一些理解:先腐蚀在膨胀,可以保证目标大致的形状不变

  • 改变的部分,是由于腐蚀操作可能会让某些目标消失,这样该目标就不能通过膨胀还原
  • 所以开运算后的图像是 原图的子集
  • 根据几何解释,所以对同一幅图像重复开运算结果是相同的

闭运算:先膨胀在腐蚀

闭运算能够弥合狭窄的断裂和细长的沟壑、消除小孔、填补轮廓中的缝隙等等

Python OpenCV库中的运算是一种图像处理操作,主要用于去除背景噪声并增强边界。它结合了膨胀和腐蚀两个步骤,先对图像应用腐蚀操作以移除边缘的小细节或小孔洞,然后通过膨胀操作来恢复被腐蚀掉的部分。运算特别适用于处理边缘模糊或存在较小空洞的对象。 ### Python Opencv运算的步骤 #### 1. 腐蚀(Corrosion) - **作用**: 移除物体边缘的小点,缩小轮廓尺寸。 - **原理**: 对于每一个像素点,如果其周围的像素都满足某种条件,则保留该像素;否则将该像素设为背景色(如0)。这个过程可以去除小的孤立像素,减少噪音。 #### 2. 膨胀(Dilation) - **作用**: 将已腐蚀后的图像的边界向外扩展,增加边界大小。 - **原理**: 如果某像素的邻域内有非背景颜色的像素点存在,那么该像素将会被填充上颜色。这个步骤有助于填补由腐蚀导致的小缺口,并扩大物体的边界。 ### 应用场景 运算常用于图像预处理阶段,尤其是针对那些形状复杂、边缘容易受到噪声影响的图像。例如,在分割文本行、检测特定形状的目标等任务中非常有用。 ### 使用示例 在Python中,使用OpenCV进行运算的基本步骤包括: ```python import cv2 import numpy as np # 加载图像 image = cv2.imread('input_image.jpg', 0) # 创建结构元素,通常使用矩形或圆形,大小可以根据需要调整 kernel_size = (5, 5) # 可以设置成任意大小 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernel_size) # 进行运算 closed = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel) cv2.imshow("Original Image", image) cv2.imshow("Closed Image", closed) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在这个例子中,我们首先加载了一个灰度图像,接着创建了一个结构元素(通常是矩形),然后通过`cv2.morphologyEx()`函数执行运算。 ### 相关问题: 1. **运算开运算的区别是什么?** 开运算通常包含腐蚀后再膨胀的操作,适用于去除背景噪声同时平滑边界,而运算则相反,更适合填充值得填充的缺口和连接碎片。 2. **如何选择合适的结构元素尺寸和形状来进行运算?** 结构元素的尺寸应根据目标图像的特征和预期的结果来调整。一般地,较大的尺寸可以帮助消除更宽的间隙,而形状的选择(如圆形、方形、椭圆等)取决于需要优化的具体视觉效果。 3. **运算是否适合所有的图像处理任务?** 并非所有情况都适合使用运算。例如,对于一些不需要清除边界内部小区域的图像处理任务,使用运算可能会引入不必要的变化。因此,理解每个工具的应用场景至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai 医学图像分割

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值