肝脏CT 语义分割(backbone = resnet34)

该博客详细介绍了利用ResNet34进行肝脏CT图像的语义分割,包括数据集处理、可视化、标签处理、训练过程和预测。讨论了是否需要对标签进行手动归一化,指出在某些情况下手动归一化是允许的,但需确保标签数据类型为float。此外,还提到了不同模型设置下,标签数据类型和损失函数的选择。
摘要由CSDN通过智能技术生成

目录

1. 文件介绍

2. dataset

2.1 dataset 的代码

2.2 代码介绍

3. dataset 的可视化

3.1 没有 transform 的可视化

3.2 包含 transform 的可视化

4. 关于label 是否设置为1

关于 label 是否手动归一化的重点

5. train 训练

6. log 日志

7. predict 文件


1. 文件介绍

整个项目的下载链接: 肝脏CT 语义分割

肝脏CT 的数据集如下展示:

 

这里的训练的image 和label放在同一个训练的train目录下,总共是800个图像。验证的image和label放在同一个val目录下,总共40个图像

 

2. dataset

dataset 是对数据的加载,返回一个训练样本(image + label)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai 医学图像分割

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值