对比学习基础

constrastive learning

通过对比数据对的“相似”或“不同”来获取数据的高阶信息。

  1. Data augmentation
  2. Encoding
  3. Loss minimization

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Instance Discrimination

个体判别任务:
在这里插入图片描述

  • 一种无监督学习方式,把每一个Instance都看作一个类别。
  • 通过一个卷积神经网络,把所有图片都编码成一个特征。并且,希望这些特征在最后的特征空间里能够尽可能分开。对于个体判别任务来说,每个图片都是自己的类。所以每个图片都尽量和其它图片分开。
  • Memory Bank: 把所有图片的特征都存到这个memory bank里面。
  • 正样本:经过数据增强的图片,负样本:数据集里面的其它图片(从memory bank中随机抽取一些图片作为负样本)。
  • 有了正负样本,就可以通过BCELoss去计算对比学习的目标函数。当更新完网络,就可以mini batch中的数据样本所对应的特征替换到memory bank中。接下来,反复进行这个过程。

Unsupervised Embedding Learning via Invariant and Spreading Instance Feature

在这里插入图片描述

同样的图片通过编码器后,它们的特征应该相似;不同的图片通过编码器后,其特征应该不类似。也就是说:对于相似的图片,相似的物体,其特征应该保持不变性(Invariant);对于不相似的物体,其特征应该尽可能分散(Spreading)开。
在这里插入图片描述
从同一个mini-batch中去选取正负样本,因为这样就可以只用一个编码器去做端对端的训练了。

Contrastive Predictive Coding

在这里插入图片描述

  • 有一个持续的序列,把之前时刻的输入放到一个编码器中,这个编码器就会返回一些特征。之后把这些特征放入自回归的模型,然后得到上下文的特征表示。最后,用这些特征表示去做一些合理的预测。
  • 正样本为未来的输入通过编码器之后得到的未来时刻的特征输出,负样本:任意选取输入,然后通过编码器得到输出,和预测不相似。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1100dp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值